Binary
 CSE 120 Winter 2020

Instructor: Teaching Assistants:

Sam Wolfson Yae Kubota Eunia Lee Erika Wolfe

Lime is laying off about $\mathbf{1 0 0}$ people and ceasing operations in $\mathbf{1 2}$ markets

Lime is hoping to achieve profitability this year by laying off about 14% of its workforce and ceasing operations in 12 markets, Axios first reported.
"Financial independence is our goal for 2020, and we are confident that Lime will be the first next-generation mobility company to reach profitability," Lime CEO Brad Bao said in a statement to TechCrunch. "We are immensely grateful for our team members, riders, Juicers and cities who supported us, and we hope to reintroduce Lime back into these communities when the time is right."

That means Lime is shutting down in Atlanta, Phoenix, San Diego, San Antonio, Linz, Bogotá, Buenos Aires, Montevideo, Lima, Puerto Vallarta, Rio de Janeiro and São Paulo.
https://techcrunch.com/2020/01/09/lime-is-laying-off-about-100-people-and-ceasing-operations-in-12-markets/

Binary Numbers
 CSE 120 Winter 2018

Instructor:

Justin Hsia

Teaching Assistants:

$\begin{array}{lll}\text { Anupam Gupta, } & \text { Cheng Ni, } & \text { Eugene Oh, } \\ \text { Sam Wolfson, } & \text { Sophie Tian, } & \text { Teagan Horkan }\end{array}$

URB-E's launching a scooter sharing network at college campuses and hotels

"URB-E, the startup that creates foldable electric scooters, is launching a transportation system designed to promote scooter sharing on colleges campuses and other large residential developments.
"Because these properties purchase the system upfront from URB-E they can decide on their own pricing structure, so a hotel could provide free access to guests while a college campus or apartment complex could customize their own pricing structure."

- https://techcrunch.com/2018/01/10/urb-es-launching-a-scooter-sharing-network-on-college-campuses-and-hotels/

Administrivia

* Assignments:
- Symbolic Lightbot (checkoff) due tonight (1/10)
- Lightbot Functions (submit) due Monday (1/13)
- Make sure you read the specifications carefully!

Lecture Outline

* Binary Worksheet: Part 1
* Decimal, Binary, and Hexadecimal
* Binary Encoding
* Binary Worksheet: Part 2
* Hints:

$$
\begin{array}{llll}
2^{0}=1 & 2^{1}=2 & 2^{2}=4 & 2^{3}=8 \\
2^{4}=16 & 2^{5}=32 & 2^{6}=64 & 2^{7}=128 \\
2^{8}=256 & 2^{9}=512 & 2^{10}=1024 &
\end{array}
$$

Lecture Outline

* Binary Worksheet: Part 1
* Decimal, Binary, and Hexadecimal
* Binary Encoding
* Binary Worksheet: Part 2

Decimal Numbering System

*Ten symbols: $0,1,2,3,4,5,6,7,8,9$

* Represent larger numbers as a sequence of digits
- Each digit is one of the available symbols
* Example: 7061 in decimal (base 10)
- $7061_{10}=\left(7 \times 10^{3}\right)+\left(0 \times 10^{2}\right)+\left(6 \times 10^{1}\right)+\left(1 \times 10^{0}\right)$

1000's pice 100 splice 10 's place

Octal Numbering System

* Eight symbols: $0,1,2,3,4,5,6,7$
- Notice that we no longer use 8 or 9
* Base comparison:
- Base 10: 0, 1, 2, 3, 4, 5, 6, 7, \& (\& 10, 11, 12...
- Base 8: 0, 1, $2,2^{3}, 4,5,6,7,10,11,12,13,14 \ldots$
* Example: What is 7061_{8} in base 10 ?
- $7061_{8}=\left(7 \times 8^{3}\right)+\left(0 \times 8^{2}\right)+\left(6 \times 8^{1}\right)+\left(1 \times 8^{0}\right)=3633_{10}$

noctal $512 s 645$

Binary and Hexadecimal

* Binary is base 2
- Symbols: 0,1
- Convention: $2{ }_{10}=10_{2}=0 b 10$
* Example: What is 0b110 in base 10 ?
- Ob110 $=110_{2}=\left(1 \times 2^{2}\right)+\left(1 \times 2^{1}\right)+\left(0 \times 2^{0}\right)=6_{10}$
* Hexadecimal (hex, for short) is base 16
- Symbols? 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- Convention: $16_{10}=10_{16}=0 \times 10$
* Example: What is 0xA5 in base 10 ?
$\begin{aligned}-0 \times A 5=A 5_{16}=\left(10 \times 16^{1}\right)+\left(5 \times 16^{0}\right) & =165_{10} \\ 160+5 & =165\end{aligned}$

Aside: Why Base 2?

* Electronic implementation
- Easy to store with bi-stable elements
- Reliably transmitted on noisy and inaccurate wires

* Other bases possible, but not yet viable:
- DNA data storage (base 4: A, C, G, T) is a hot topic
- Quantum computing

Base Comparison

*Why does this matter?

- Humans think about numbers in base 10, but computers "think" about numbers in base 2
- Binary encoding is what allows computers to do all of the amazing things that they do!
decond brams hex

Base 10	Base 2	Base 16
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	B
12	1100	C
13	1101	D
14	1110	E
15	1111	F

Lecture Outline

* Binary Worksheet: Part 1
* Decimal, Binary, and Hexadecimal
* Binary Encoding
* Binary Worksheet: Part 2

Numerical Encoding

* AMAZING FACT: You can represent anything countable using numbers!
- Need to agree on an encoding
- Kind of like learning a new language
* Examples:
- Decimal Integers: 0 $\rightarrow 0 b 0,1 \rightarrow 0 b 1,2 \rightarrow 0 b 10$, etc.
- English Letters: © $\mathbb{C D} \rightarrow 0 \times 435345$, yay $\rightarrow 0 \times 796179$
- Emoticons: 0x0, $\rightarrow 0 \times 1,0 \times 2$, 曷 0×3, $0 \times 4,0 \times 5$

Binary Encoding

* With N binary digits, how many "things" can you represent?

999

- Need N binary digits to represent n things, where $2^{\mathrm{N}} \geq n$
- Example: 5 binary digits for alphabet because $2^{5}=32>26$
* A binary digit is known as a bit
* A group of 4 bits (1 hex digit) is called a nibble 1011
* A group of 8 bits (2 hex digits) is called a byte 1011105
- 1 bit $\rightarrow 2$ things, 1 nibble $\rightarrow 16$ things, 1 byte $\rightarrow 256$ things

So What's It Mean?

* A sequence of bits can have many meanings!
* Consider the hex sequence 0x4E6F21
- Common interpretations include:
- The decimal number 5140257
- The characters "No!"
- The background color of this slide
- The real number 7.203034×10^{-39}
* It is up to the program/programmer to decide how to interpret the sequence of bits

Binary Encoding - Colors

* RGB - Red, Green, Blue
- Additive color model (light): byte (8 bits) for each color
- Commonly seen in hex (in HTML, photo editing, etc.)
- Examples: Purple $\rightarrow 0 \times 4 B 2 A 85$, Gold $\rightarrow 0 x B A A 47 B$, Orange $\rightarrow 0 \times E 2661 \mathrm{~A}$, Turqoise $\rightarrow 0 \times 33997 \mathrm{E}$

Binary Encoding - Characters/Text

ASCII Encoding (www.asciitable.com)

- American Standard Code for Information Interchange

Dec HxOct Char		
0	0000 NUL	(null)
1	100150 S	(start of heading)
2	2002 STX	(start of text)
3	3003 ETX	(end of text)
4	4004 EOT	(end of transmission)
5	5005 ENQ	(enquiry)
6	6006 ACK	(acknowledge)
7	7007 BEL	(bell)
8	8010 BS	(backspace)
9	9011 TAB	(horizontal tab)
10	A 012 LF	(NL line feed, new line)
11	B 013 VT	(vertical tab)
12	C 014 FF	(NP form feed, new page)
13	D 015 CR	(carriage return)
14	E 016 S0	(shift out)
15	F 017 SI	(shift in)
16	10020 DLE	(data link escape)
17	11021 DCl	(device control l)
18	12022 DC2	(device control 2)
19	13023 DC3	(device control 3)
20	14024 DC4	(device control 4)
21	15025 NAK	(negative acknowledge)
22	16026 SYN	(synchronous idle)
23	17027 ETB	(end of trans. block)
24	18030 CAN	(cancel)
25	19031 EM	(end of medium)
26	14 032 SUB	(substitute)
27	1B 033 ESC	(escape)
28	1C 034 FS	(file separator)
29	1D 035 GS	(group separator)
30	1E 036 RS	(record separator)
31	1F 037 US	(unit separator)

Dec Hx Oct Html Chr $\begin{aligned} & \text { Dec } \mathrm{Hx} \text { Oct } \mathrm{Html} \text { chr } \\ & \text { Dec } \mathrm{Hx} \text { Oct Html Chr }\end{aligned}$

Source: www.LookupTables.com

Binary Encoding - Video Games

* As programs run, in-game data is stored somewhere
* In many old games, stats would go to a maximum of 255
* Pacman "kill screen"

- http://www.numberphile.com/videos/255.html

Binary Encoding - Files and Programs

* At the lowest level, all digital data is stored as bits!
* Layers of abstraction keep everything comprehensible
- Data/files are groups of bits interpreted by program
- Program is actually groups of bits being interpreted by your CPU
* Computer Memory Demo
- Can try to open files using a text editor
- From vim: \% ! xxd

giraffe.jpg

Lecture Outline

* Binary Worksheet: Part 1
* Decimal, Binary, and Hexadecimal
* Binary Encoding
* Binary Worksheet: Part 2
* Hints:

$$
\begin{array}{llll}
2^{0}=1 & 2^{1}=2 & 2^{2}=4 & 2^{3}=8 \\
2^{4}=16 & 2^{5}=32 & 2^{6}=64 & 2^{7}=128 \\
2^{8}=256 & 2^{9}=512 & 2^{10}=1024 &
\end{array}
$$

Summary

* Humans think about numbers in decimal; computers think about numbers in binary
- Base conversion to go between them
- Hexadecimal is more human-readable than binary
* All information on a computer is binary
* Binary encoding can represent anything!
- Computer/program needs to know how to interpret the bits

Summary

> THERE ARE 10 TVPES OF
> PEOPLE IN THE WORID, THOSE WHO UNDERSTAND BINARY AND THOSE WHO DON'T....

