Lecture 5: Variables Worksheet

1) Open Processing and type in the following lines, each of which contains an error. Processing will warn you about the error in a red bar towards the bottom of the window. Write down the error message associated with each line:

Code	Error Message
$x=0.5 ;$	
int $x=0.5 ;$	
float $y=0.5$	

2) For the following sequence of code, indicate the variable values after each statement is executed (i.e. this is one program, but we are pausing after each statement to observe the current variable values). If a variable value doesn't exist, then write " n / a ".

3) The max () command returns the larger of two values, while min () returns the smaller of two values. For the following values of int \mathbf{x} and int \mathbf{y}, what do the shown commands return?

\mathbf{x}	$\max (0, \mathbf{x}) ;$
10	
5	
0	
-5	

\mathbf{y}	$\min (200, \mathbf{y}) ;$
190	
195	
200	
205	

4) Type the following code into a new Processing file and then press Play.
int $x=120$;
println(x);
Notice that an empty canvas appears and the value of x gets printed to the console. You can use the println() function to double-check your answers to questions 2 and 3.
5) Type the following code into a new Processing file and then press Play.
```
void setup() {
    size(500, 500);
}
void draw() {
    triangle(70, 10, 30, 50, 110, 50); // roof
    rect(30, 50, 80, 80); // walls
    rect(80, 90, 20, 40); // door
}
```

This draws the house shown in lecture! Following the procedure shown in lecture, introduce a variable named housex that controls the horizontal position of the house and update the code to put the house in the middle of the canvas (houseX = 250; should do the trick).
6) [Optional] Take your finished code from question 5 and introduce a variable housey that controls the vertical position of the house.

