
Computers:
A Look Behind The Curtain

Sam Wolfson
CSE 120, Winter 2020

Administrivia
• Assignments

• Controlling Elli due tonight
• Portfolio Update 2 due next Wednesday (Feb 26)
• Tic-Tac-Toe (last programming assignment until your

final project!) due next Thursday (Feb 27)

• Looking ahead…
• Final project design document due next Friday (Feb 28)
• Living Computers Museum report due Mar 2

• Guest lecture next Monday: HCI

Quiz Recap

A Light Switch
The switch interrupts the circuit when it is off

+-

A Light Switch
…and completes the circuit when it is on

+-

A Transistor
…is just like a switch (but controlled by electricity)!

+-

+ -

A Transistor
…is just like a switch (but controlled by electricity)!

Connecting the
small circuit turns

on the large circuit!

+-

+ -

Transistors
• Idea: use a small amount of electricity to control a

(possibly larger) amount of electricity
• Example: amplifiers

• In computers: use circuits to control other circuits!

Building Logic With Transistors
• In Processing: can compare boolean values

• In hardware:
• false means the circuit is off
• true means the circuit is on

• How to implement comparison with transistors?

A && B A || B !A

AND gate
Goal: OUT = A && B

+

-

voltage

ground

false: circuit off
true: circuit on

AND gate
Goal: OUT = A && B

+

-

voltage

ground

false: circuit off
true: circuit on

AND gate
Goal: OUT = A && B

+

-

OUT is only true
when both A and B

are true!

voltage

ground

false: circuit off
true: circuit on

OR gate
Goal: OUT = A || B voltage

ground

OUT is true when
either A and B are

true!

false: circuit off
true: circuit on

NOT gate
Goal: OUT = !A voltage

ground

OUT is true when
A is false!

false: circuit off
true: circuit on

Gates Galore!

Q = A || B Q = A && B Q = A ^ B

Q = !(A || B) Q = !(A && B) Q = !A

Gates can be combined…
• To build more complex circuits

• Addition, subtraction, multiplication, comparison, etc.

• The CPU in your computer contains billions of
transistors arranged into these circuits
• Performs these operations billions

of times per second

• How do we tell the CPU what to do?
• Could switch wires on and off, but…

Computer Instructions
• We can feed certain instructions into a computer and

retrieve the results.
• But what does an instruction look like?

How do we know which one to use?
• Like all other data on a computer, instructions are just

binary! (literally translated to electricity on wires)
• Example: the number 0x83 tells computers with Intel

processors to add two numbers together.

• An executable file (program) contains the binary
encoding of all its instructions and data.
• Example: .exe files on Windows

Instructions Are Limited
• The number and types of instructions that a CPU can

perform is always limited.
• Can’t change the circuits after the CPU is built!

• Example: with Lightbot, you could only perform a
certain number of actions:

• The instructions that a specific type of computer can
understand are defined by the Instruction Set
Architecture (ISA).
• The CPU and other hardware are designed to understand

only these predefined instructions.

Types of Instructions
• What kinds of operations do you think would be

useful for a computer to support?
• Talk with your neighbor!

• Shut down the computer
• Arithmetic
• User input
• Taking pictures
• Internet access

Types of Instructions
• Arithmetic operations

• Control flow: what should we do next?
• Normally, instructions are executed sequentially.

However, we can use control flow instructions to:
• Jump to function calls
• Possibly jump on conditional branches
• Possibly jump in loops

• Transfer data between CPU and memory
• Load data from memory into CPU
• Store data from CPU into memory

c = a + b; z = x * y; i = h && j;

int i = 0;
while (i < 3) {

i = i + 1;
}

Aside: Memory
• We need somewhere to store information

• Instructions for the computer to execute
• Data (e.g., variables, files, etc.)

• Treat memory like a single, massive array
• Each entry is the same size (1 byte)
• Each entry has an index (address) and a value (data)

• If instructions need to reference data stored in
memory, they can look it up using the address
• Just like indexing into an array

Generating Instructions
• We need to specify complex tasks using only

simple actions provided by instructions
• Luckily, this is done for us – by other programs!

High-Level Language
(Processing)

Assembly Language
(x86, MIPS, ARM)

Machine Language
(Executable File)

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

mov (%rsp), %edx
mov (%rsp,4), %ecx
mov %edx, (%rsp,4)
mov %ecx, (%rsp)

0000 1001 1100 0110 1010 1111 0101
1000 1010 1111 0101 1000 0000 1001
1100 0110 1100 0110 1010 1111 0101

Compiler

Assembler

Bootstrapping
• But wait – if we use another program to compiler

our program, how was that program compiled?
• Who compiles the compiler?

• The first compilers were written directly in binary.

• Bootstrapping: we can use simple languages to
create increasingly complex ones.

Abstraction Assembly

C

Java

Processing

Python

Instruction Execution
• The agent (in this case, the CPU) follows

instructions flawlessly and mindlessly.
• Identical inputs à identical results

• The program counter (PC) contains the memory
address of the current instruction.
• So the CPU knows what to execute
• Updated after each instruction is executed, sometimes

jumping around based on the program's control flow.

Fetch-Execute Cycle
• The most basic operation of a computer is to

continually perform the following cycle:
• Fetch the next instruction (read from memory).
• Execute the instruction based on its purpose and data.

• Execute portion broken down into:
• Instruction decode
• Data fetch
• Instruction computation
• Store result

Fetch
Instruction

Decode
Instruction

Fetch
Relevant Data

Compute
Instruction

Store
Data

Update
PC

Fetch-Execute Cycle (Worksheet)

Address Value
0x00 12
0x01 6
0x02 add 0x00, 0x01
0x03 store 0x01

Memory

CPU

0x02

PC Output

Current Instruction

Fetch-Execute Cycle

Address Value
0x00 12
0x01 6
0x02 add 0x00, 0x01
0x03 store 0x01

Memory

CPU

0x02 ??

??

PC Output

Current Instruction

Fetch-Execute Cycle

Address Value
0x00 12
0x01 6
0x02 add 0x00, 0x01
0x03 store 0x01

Memory

CPU

0x02 ??

??

PC Output

Current Instruction

The Program Counter points to the address 0x02 in memory.

Fetch-Execute Cycle

Address Value
0x00 12
0x01 6
0x02 add 0x00, 0x01
0x03 store 0x01

Memory

CPU

0x02 ??

add 0x00, 0x01

PC Output

Current Instruction

Fetch the instruction.

𝒙 + 𝒚

Fetch-Execute Cycle

Address Value
0x00 12
0x01 6
0x02 add 0x00, 0x01
0x03 store 0x01

Memory

CPU

0x02 ??

add 0x00, 0x01

PC Output

Current Instruction

Decode the instruction.

𝑥 + 𝑦

Fetch-Execute Cycle

Address Value
0x00 12
0x01 6
0x02 add 0x00, 0x01
0x03 store 0x01

Memory

CPU

0x02 ??

add 0x00, 0x01

PC Output

Current Instruction

Fetch the relevant data from memory.

𝟏𝟐 + 𝟔

Fetch-Execute Cycle

Address Value
0x00 12
0x01 6
0x02 add 0x00, 0x01
0x03 store 0x01

Memory

CPU

0x02 ??

add 0x00, 0x01

PC Output

Current Instruction

Compute the result…

12 + 6 = 𝟏𝟖

Fetch-Execute Cycle

Address Value
0x00 12
0x01 6
0x02 add 0x00, 0x01
0x03 store 0x01

Memory

CPU

0x02 18

add 0x00, 0x01

PC Output

Current Instruction

…and place it in temporary storage.

12 + 6 = 𝟏𝟖

Fetch-Execute Cycle

Address Value
0x00 12
0x01 6
0x02 add 0x00, 0x01
0x03 store 0x01

Memory

CPU

0x03 18

add 0x00, 0x01

PC Output

Current Instruction

Now, advance the Program Counter to point to the next instruction.

Fetch-Execute Cycle

Address Value
0x00 12
0x01 6
0x02 add 0x00, 0x01
0x03 store 0x01

Memory

CPU

0x03 18

add 0x00, 0x01

PC Output

Current Instruction

Now, advance the Program Counter to point to the next instruction.

Fetch-Execute Cycle

Address Value
0x00 12
0x01 6
0x02 add 0x00, 0x01
0x03 store 0x01

Memory

CPU

0x03 18

store 0x01

PC Output

Current Instruction

Fetch the instruction into the CPU.

Fetch-Execute Cycle

Address Value
0x00 12
0x01 6
0x02 add 0x00, 0x01
0x03 store 0x01

Memory

CPU

0x03 18

store 0x00

PC Output

Current Instruction

Decode the instruction: “store the output value into memory at 0x00.”

Fetch-Execute Cycle

Address Value
0x00 12
0x01 6
0x02 add 0x00, 0x01
0x03 store 0x01

Memory

CPU

0x03 18

store 0x01

PC Output

Current Instruction

Execute the instruction.

Fetch-Execute Cycle

Address Value
0x00 18
0x01 6
0x02 add 0x00, 0x01
0x03 store 0x01

Memory

CPU

0x03 18

store 0x01

PC Output

Current Instruction

Execute the instruction.

Fetch-Execute Cycle

Address Value
0x00 18
0x01 6
0x02 add 0x00, 0x01
0x03 store 0x01

Memory

CPU

0x04 18

store 0x01

PC Output

Current Instruction

And so on, and so forth…

Clock Rate
• The speed at which your computer can perform

the Fetch-Execute cycle.
• Must ensure that the clock rate is slow enough to

accommodate the slowest instruction.

• Clock rate is usually given in Hertz.
• Example: 2 𝐺ℎ𝑧 = 2 ∗ 103 𝐻𝑧 = 2 billion :;<=>?@=:A;<

<B@A;C

• However, clock rate is often not a good indicator
of speed
• Modern CPUs spend a lot of their time idle, waiting for

data from memory, disk drives, networks, etc.

1 ℎ𝑒𝑟𝑡𝑧 =
1 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛

𝑠𝑒𝑐𝑜𝑛𝑑

Example: Running Processing
• The Processing environment compiles your code

into machine language (0s and 1s, which
becomes electricity on wires in the CPU)
• Memory is automatically set aside for the

program's instructions, variables, and data.
• Starting from the beginning of your program (in

the case of Processing, the setup() function) the
computer will continuously perform the Fetch-
Execute cycle.
• It will continue executing until the end of the program

is reached, or it encounters an error.

