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Welcome to CSE 140!

CSE 140 teaches core programming concepts 

with an emphasis on real data manipulation 

tasks from science, engineering, and business

Goal by the end of the quarter:  Given a data 

source and a problem description, you can 

independently write a complete, useful program 

to solve the problem
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Course staff

• Lecturer:

– Michael Ernst

• TAs:

– Dun-Yu Hsiao

– David Mah

– Allison Obourn (for CSE 190 D)

– Isaac Reynolds

– Jackson Roberts

Ask us for help!



CSE 190 D

• Learn the Java programming language

• 1 credit

• Credit / no credit

• Tuesdays at 1:30 in EEB 003



Learning Objectives

• Computational problem-solving 
– Writing a program will become your “go-to” solution 

for data analysis tasks

• Basic Python proficiency
– Including experience with relevant libraries for data 

manipulation, scientific computing, and visualization.

• Experience working real datasets 
– astronomy, biology, linguistics, oceanography, open 

government, social networks, and more. 

– You will see that these are easy to process with a 
program, and that doing so yields insight.



What this course is not

• A “skills course” in Python
– …though you will become proficient in the basics of the Python 

programming language

– …and you will gain experience with some important Python 
libraries

• A data analysis / “data science” / data visualization course
– There will be very little statistics knowledge assumed or taught

• A “project” course
– the assignments are “real,” but are intended to teach specific 

programming concepts

• A “big data” course
– Datasets will all fit comfortably in memory

– No parallel programming



“It’s a great time to be a data geek.”
-- Roger Barga, Microsoft Research

“The greatest minds of my generation are trying 

to figure out how to make people click on ads”
-- Jeff Hammerbacher, co-founder, Cloudera
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All of science is reducing to 

computational data manipulation

Old model: ““““Query the world”””” (Data acquisition coupled to a specific hypothesis)

New model: ““““Download the world”””” (Data acquisition supports many hypotheses)

– Astronomy: High-resolution, high-frequency sky surveys (SDSS, LSST, PanSTARRS)

– Biology: lab automation, high-throughput sequencing, 

– Oceanography: high-resolution models, cheap sensors, satellites

40TB / 2 nights

~1TB / day

100s of devices



Example: Assessing treatment efficacy

Zip code of clinic

Zip code of patient

number of follow ups 

within 16 weeks after 

treatment enrollment. 

Question: Does the distance between the 

patient’s home and clinic influence the number 

of follow ups, and therefore treatment efficacy?



Python program to assess treatment efficacy
# This program reads an Excel spreadsheet whose penultimate

# and antepenultimate columns are zip codes.

# It adds a new last column for the distance between those zip

# codes, and outputs in CSV (comma-separated values) format.

# Call the program with two numeric values:  the first and last

# row to include. 

# The output contains the column headers and those rows. 

# Libraries to use

import random

import sys

import xlrd # library for working with Excel spreadsheets

import time

from gdapi import GoogleDirections

# No key needed if few queries

gd = GoogleDirections('dummy-Google-key')

wb = xlrd.open_workbook('mhip_zip_eScience_121611a.xls')

sheet = wb.sheet_by_index(0)

# User input:  first row to process, first row not to process

first_row = max(int(sys.argv[1]), 2)

row_limit = min(int(sys.argv[2]+1), sheet.nrows)

def comma_separated(lst):

return ",".join([str(s) for s in lst])

headers = sheet.row_values(0) + ["distance"]

print comma_separated(headers)

for rownum in range(first_row,row_limit):

row = sheet.row_values(rownum)

(zip1, zip2) = row[-3:-1]

if zip1 and zip2:

# Clean the data

zip1 = str(int(zip1))

zip2 = str(int(zip2))

row[-3:-1] = [zip1, zip2]

# Compute the distance via Google Maps

try:

distance = gd.query(zip1,zip2).distance

except:

print >> sys.stderr, "Error computing distance:", zip1, zip2

distance = ""

# Print the row with the distance

print comma_separated(row + [distance])

# Avoid too many Google queries in rapid succession

time.sleep(random.random()+0.5)

23 lines of executable code!



Demo:  Election polling



Course logistics

• Website:  http://www.cs.washington.edu/cse140

• See the website for all administrative details

• Read the handouts and required texts, before the 
lecture
– There is a brief reading quiz due before each lecture

• Take notes

• Homework 1 part 1 is due Wednesday
– As are two surveys

• You get 4 late days throughout the quarter
– No other extensions (contact the instructor if you are hospitalized)

• If you want to join the class, email cse140-
waitlist@cs.washington.edu, from your @u address



Academic Integrity

• Honest work is required of an engineer

• Collaboration policy on the course web.  Read it!
– Discussion is permitted

– Carrying materials from discussion is not permitted

– Everything you turn in must be your own work
• Cite your sources, explain any unconventional action

– You may not view others’ work

– If you have a question, ask

• I trust you completely

• I have no sympathy for trust violations – nor 
should you
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How to succeed

• No prerequisites

• Non-predictors for success:
– Past programming experience

– Enthusiasm for games or computers

• Programming and data analysis are challenging

• Every one of you can succeed
– There is no such thing as a “born programmer”

– Work hard

– Follow directions

– Be methodical

– Think before you act

– Try on your own, then ask for help

– Start early


