
Introduction to

Data Programming

CSE 140

University of Washington

Michael Ernst

Welcome to CSE 140!

CSE 140 teaches core programming concepts

with an emphasis on real data manipulation

tasks from science, engineering, and business

Goal by the end of the quarter: Given a data

source and a problem description, you can

independently write a complete, useful program

to solve the problem

2

Course staff

• Lecturer:

– Michael Ernst

• TAs:

– Dun-Yu Hsiao

– David Mah

– Allison Obourn (for CSE 190 D)

– Isaac Reynolds

– Jackson Roberts

Ask us for help!

CSE 190 D

• Learn the Java programming language

• 1 credit

• Credit / no credit

• Tuesdays at 1:30 in EEB 003

Learning Objectives

• Computational problem-solving
– Writing a program will become your “go-to” solution

for data analysis tasks

• Basic Python proficiency
– Including experience with relevant libraries for data

manipulation, scientific computing, and visualization.

• Experience working real datasets
– astronomy, biology, linguistics, oceanography, open

government, social networks, and more.

– You will see that these are easy to process with a
program, and that doing so yields insight.

What this course is not

• A “skills course” in Python
– …though you will become proficient in the basics of the Python

programming language

– …and you will gain experience with some important Python
libraries

• A data analysis / “data science” / data visualization course
– There will be very little statistics knowledge assumed or taught

• A “project” course
– the assignments are “real,” but are intended to teach specific

programming concepts

• A “big data” course
– Datasets will all fit comfortably in memory

– No parallel programming

“It’s a great time to be a data geek.”
-- Roger Barga, Microsoft Research

“The greatest minds of my generation are trying

to figure out how to make people click on ads”
-- Jeff Hammerbacher, co-founder, Cloudera

3/29/2013 Bill Howe, eScience Institute 8

All of science is reducing to

computational data manipulation

Old model: ““““Query the world”””” (Data acquisition coupled to a specific hypothesis)

New model: ““““Download the world”””” (Data acquisition supports many hypotheses)

– Astronomy: High-resolution, high-frequency sky surveys (SDSS, LSST, PanSTARRS)

– Biology: lab automation, high-throughput sequencing,

– Oceanography: high-resolution models, cheap sensors, satellites

40TB / 2 nights

~1TB / day

100s of devices

Example: Assessing treatment efficacy

Zip code of clinic

Zip code of patient

number of follow ups

within 16 weeks after

treatment enrollment.

Question: Does the distance between the

patient’s home and clinic influence the number

of follow ups, and therefore treatment efficacy?

Python program to assess treatment efficacy
This program reads an Excel spreadsheet whose penultimate

and antepenultimate columns are zip codes.

It adds a new last column for the distance between those zip

codes, and outputs in CSV (comma-separated values) format.

Call the program with two numeric values: the first and last

row to include.

The output contains the column headers and those rows.

Libraries to use

import random

import sys

import xlrd # library for working with Excel spreadsheets

import time

from gdapi import GoogleDirections

No key needed if few queries

gd = GoogleDirections('dummy-Google-key')

wb = xlrd.open_workbook('mhip_zip_eScience_121611a.xls')

sheet = wb.sheet_by_index(0)

User input: first row to process, first row not to process

first_row = max(int(sys.argv[1]), 2)

row_limit = min(int(sys.argv[2]+1), sheet.nrows)

def comma_separated(lst):

return ",".join([str(s) for s in lst])

headers = sheet.row_values(0) + ["distance"]

print comma_separated(headers)

for rownum in range(first_row,row_limit):

row = sheet.row_values(rownum)

(zip1, zip2) = row[-3:-1]

if zip1 and zip2:

Clean the data

zip1 = str(int(zip1))

zip2 = str(int(zip2))

row[-3:-1] = [zip1, zip2]

Compute the distance via Google Maps

try:

distance = gd.query(zip1,zip2).distance

except:

print >> sys.stderr, "Error computing distance:", zip1, zip2

distance = ""

Print the row with the distance

print comma_separated(row + [distance])

Avoid too many Google queries in rapid succession

time.sleep(random.random()+0.5)

23 lines of executable code!

Demo: Election polling

Course logistics

• Website: http://www.cs.washington.edu/cse140

• See the website for all administrative details

• Read the handouts and required texts, before the
lecture
– There is a brief reading quiz due before each lecture

• Take notes

• Homework 1 part 1 is due Wednesday
– As are two surveys

• You get 4 late days throughout the quarter
– No other extensions (contact the instructor if you are hospitalized)

• If you want to join the class, email cse140-
waitlist@cs.washington.edu, from your @u address

Academic Integrity

• Honest work is required of an engineer

• Collaboration policy on the course web. Read it!
– Discussion is permitted

– Carrying materials from discussion is not permitted

– Everything you turn in must be your own work
• Cite your sources, explain any unconventional action

– You may not view others’ work

– If you have a question, ask

• I trust you completely

• I have no sympathy for trust violations – nor
should you

13

How to succeed

• No prerequisites

• Non-predictors for success:
– Past programming experience

– Enthusiasm for games or computers

• Programming and data analysis are challenging

• Every one of you can succeed
– There is no such thing as a “born programmer”

– Work hard

– Follow directions

– Be methodical

– Think before you act

– Try on your own, then ask for help

– Start early

