
Control flow

Michael Ernst

UW CSE 140

Winter 2013

Repeating yourself

Making decisions

Temperature conversion chart

Recall exercise from previous lecture

fahr = 30
cent = (f-32)/9.0*5
print fahr, cent
fahr = 40
cent = (f-32)/9.0*5
print fahr, cent
fahr = 50
cent = (f-32)/9.0*5
print fahr, cent
fahr = 60
cent = (f-32)/9.0*5
print fahr, cent
fahr = 70
cent = (f-32)/9.0*5
print fahr, cent
print "All done"

Output:

30 -1.11

40 4.44

50 10.0

60 15.56

70 21.11

All done

Temperature conversion chart

A better way to repeat yourself:

for f in [30,40,50,60,70]:

print f, (f-32)/9.0*5

print "All done"

Loop body

is indented

A list

Indentation

is significant

for loop

Execute the body

5 times:

• once with f = 30

• once with f = 40

• …

loop variable or

iteration variable

Output:

30 -1.11

40 4.44

50 10.0

60 15.56

70 21.11

All done

Colon is

required

i = 1
print i
i = 4
print i
i = 9
print i

How a loop is executed:

Transformation approach

for i in [1,4,9]:
print i

State of the

computer: Printed output:

1

4

9

i: 1i: 4i: 9

Idea: convert a for loop into something we know how to execute

1. Evaluate the sequence expression

2. Write an assignment to the loop
variable, for each sequence
element

3. Write a copy of the loop after each
assignment

4. Execute the resulting statements

for i in [1,4,9]:
print i

How a loop is executed:

Direct approach

Printed output:

1

4

9

i: 1i: 4i: 9

Current location in list

State of the

computer:

1. Evaluate the sequence expression

2. While there are sequence

elements left:

a) Assign the loop variable to the next

remaining sequence element

b) Execute the loop body

The body can be multiple statements

Execute whole body, then execute whole body again, etc.

for i in [3,4,5]:
print "Start body"
print i
print i*i

Convention: often use i or j as loop variable
This is an exception to the rule that
variable names should be descriptive

Output:

Start body

3

9

Start body

4

16

Start body

5

25

NOT:

Start body

Start body

Start body

3

4

5

9

16

25

loop body:

3 statements

Indentation is significant

• Every statement in the body must have exactly the same indentation

• That’s how Python knows where the body ends

for i in [3,4,5]:
print "Start body"
print i

print i*i

• Compare the results of these loops:

for f in [30,40,50,60,70]:
print f, (f-32)/9.0*5

print "All done"

for f in [30,40,50,60,70]:
print f, (f-32)/9.0*5
print "All done"

Error!

The body can be multiple statements

How many statements does this loop contain?

for i in [0,1]:

print "Outer", i

for j in [2,3]:

print " Inner", j

print " Sum", i+j

print "Outer", i

What is the output?

Output:

Outer 0

Inner 2

Sum 2

Inner 3

Sum 3

Outer 0

Outer 1

Inner 2

Sum 3

Inner 3

Sum 4

Outer 1

loop body:

3 statements“nested”

loop body:

2 statements

Key idea:

1. Assign each sequence element to the loop variable

2. Duplicate the body

Understand loops through the

transformation approach

for i in [0,1]:
print "Outer", i
for j in [2,3]:
print " Inner", j

i = 0
print "Outer", i
for j in [2,3]:
print " Inner", j

i = 1
print "Outer", i
for j in [2,3]:
print " Inner", j

i = 0
print "Outer", i
j = 2
print " Inner", j
j = 3
print " Inner", j
i = 1
print "Outer", i
for j in [2,3]:
print " Inner", j

Fix this loop

Goal: print 1, 2, 3, …, 48, 49, 50

for tens_digit in [0, 1, 2, 3, 4]:

for ones_digit in [1, 2, 3, 4, 5, 6, 7, 8, 9]:

print tens_digit * 10 + ones_digit

What does it actually print?

How can we change it to correct its output?

Moral: Watch out for edge conditions (beginning

or end of loop)

Reusing loop variable

(don’t do this!)

Test your understanding of loops
Puzzle 1:

for i in [0,1]:

print i

print i

Puzzle 2:
i = 5

for i in []:

print i

Puzzle 3:
for i in [0,1]:

print "Outer", i

for i in [2,3]:

print " Inner", i

print "Outer", i

inner

loop

body

outer

loop

body

Outer 0

Inner 2

Inner 3

Outer 3

Outer 1

Inner 2

Inner 3

Outer 3

0

1

1

Output:

(no output)

The range function

A typical for loop does not use an explicit list:

for i in range(5):

… body …

range(5) = [0,1,2,3,4]

range(1,5) = [1,2,3,4]

range(1,10,2) = [1,3,5,7,9]

The list

[0,1,2,3,4]

Upper limit

(exclusive)

Lower limit

(inclusive)

step (distance

between elements)

Decomposing a list computation

• To compute a value for a list:

– Compute a partial result for all but the last element

– Combine the partial result with the last element

Example: sum of a list:

[3, 1, 4, 1, 5, 9, 2, 6, 5]

List b

List a

sum(List a) = sum(List a) + 5

sum(List b) = sum(List c) + 6

…

sum(List y) = sum(List z) + 3

sum(empty list) = 0

List c

List y

List z

How to process a list:

One element at a time

• A common pattern when processing a list:
result = initial_value

for element in list:

result = updated result

… use result

• initial_value is a correct result for an empty list

• As each element is processed, result is a
correct result for a prefix of the list

• When all elements have been processed,
result is a correct result for the whole list

Sum of a list
result = 0
for element in mylist:
result = result + element

Examples of list processing

• Product of a list:
result = 1
for element in mylist:

result = result * element

• Maximum of a list:
result = mylist[0]
for element in mylist:

result = max(result, element)

• Approximate the value 3 by 1 + 2/3 + 4/9 + 8/27 + 16/81 + …
= (2/3)0 + (2/3)1 + (2/3)2 + (2/3)3 + … + (2/3)10

result = 0
for element in range(11):

result = result + (2.0/3.0)**element

result = initial_value
for element in list:
result = updated result

The first element of the

list (counting from zero)

Making decisions

• How do we compute absolute value?

abs(5) = 5

abs(0) = 0

abs(-22) = 22

Absolute value solution

If the value is negative, negate it.

Otherwise, use the original value.

val = -10

if val < 0:
result = - val

else:
result = val

print result

val = -10

if val < 0:
print - val

else:
print val

Execution gets here only

if “height > 100” is false

AND “height > 50” is true

The if body can be any statements

height is in km

if height > 100:

print "space"

else:

if height > 50:

print "mesosphere"

else:

if height > 20:

print "stratosphere"

else:

print "troposphere"

height is in km

if height > 100:

print "space"

elif height > 50:

print "mesosphere"

elif height > 20:

print "stratosphere"

else:

print "troposphere"

height is in km

if height > 50:

if height > 100:

print "space"

else:

print "mesosphere"

else:

if height > 20:

print "stratosphere"

else:

print "troposphere"

then

clause

else

clause

t

e
t

e

0 10 20 30 40 50 60 70 80 90 100

troposphere stratosphere mesosphere space

km

above

earth

Execution gets here only

if “height > 100” is false

The then clause or the else clause

is executed

if is_prime(x):

y = x / 0

else

y = x*x

