
Unordered Collections 11/12/2003

CSE142 03au 1Unordered

11/12/2003 (c) 2001-3, University of Washington P2-1

CSE 142

Unordered Collections:
Sets and Maps

11/12/2003 (c) 2001-3, University of Washington P2-2

Introduction

• Quick Review:
• Ordered vs. Unordered collections
• an Ordered Collection: ArrayList

• Today:
• an Unordered Collection: Set (HashSet)
• an Unordered Collection: Map (HashMap)

• Reading
• Use these slides and JavaDoc for reference
• Not covered in N&H textbook!

• A word of assurance... this will not be on the midterm!

11/12/2003 (c) 2001-3, University of Washington P2-3

Ordered vs. Unordered Collections
• Some collections have a natural order of their elements:

• the steps in a recipe
• the list of daily weather observations
• the list of shapes to be drawn (with later shapes layered over earlier shapes)
• actors in a play “in order of appearance”

• Lists (e.g. ArrayList) are good for these collections.
• Some collections don't have any obvious natural order:

• the ingredients in a recipe
• the stars in the sky
• the merchandise at Freddy Meyer’s

• ArrayLists are not ideal for these collections.

11/12/2003 (c) 2001-3, University of Washington P2-4

Sets

• Sets in mathematics are collections...
• without any particular order in the elements
• without duplicates

• if you have a set and try to add to it something already in the set...
It's not an error

the set remains unchanged

• List or Set?
• Subscribers to a magazine (hint: what happens when they renew?)
• Partners in the IPL waiting for a consultant on the day the homework is due
• People at CLUE discussing Java
• Colors of the rainbow

Unordered Collections 11/12/2003

CSE142 03au 2Unordered

11/12/2003 (c) 2001-3, University of Washington P2-5

Sets in Java

• You could define your own class and base it on an
ArrayList, or...

• You could use directly one of two set implementations
in java.util

• Classes are named HashSet and TreeSet
• Strange names, indeed

• We'll explain and discuss in CSE143
• In CSE142 all our examples are with HashSet

• Many HashSet methods are similar to methods of
ArrayList
• Not accidental! More when we discuss “inheritance”

11/12/2003 (c) 2001-3, University of Washington P2-6

HashSet Methods
• These should look very familiar!
• A partial interface:

public class HashSet {
// Add the argument object to the set, if it wasn't there already
public boolean add(Object obj);
// Return whether the argument object is an element of the set
public boolean contains(Object obj);
// Remove the argument object from the set, if it was present
public boolean remove(Object obj);
// Return the number of elements in the set
public int size();
// Return an iterator that will go through all the set's elements, in some order
public Iterator iterator();
…

}

11/12/2003 (c) 2001-3, University of Washington P2-7

Using HashSets
HashSet set = new HashSet();

set.add("Parsley"); set.add("Sage"); set.add("Oregano");
set.add("Rosemary"); set.add("Thyme"); // draw the picture!
int count = set.size(); // what is count?

set.remove("Oregano"); // what is the picture now?

if (set.contains("Arsenic")) {
System.out.println("Beware!");

}
Iterator iter = set.iterator();

while (iter.hasNext()) {

String ingredient = (String) iter.next();

System.out.println(ingredient);
} // what is printed?

11/12/2003 (c) 2001-3, University of Washington P2-8

A Problem: Who Gets the Scholarship?

• A famous philanthropist want to give a scholarship to
everyone who has taken CSE142 or MA126. He has a
(long) list of each group's members. Who gets the
scholarships?

A: Think of an algorithm which takes the two lists and
produces a list with each person's name in it only once.

B: Think of a simpler algorithm which produces a set with
each person in it only once.

Unordered Collections 11/12/2003

CSE142 03au 3Unordered

11/12/2003 (c) 2001-3, University of Washington P2-9

Beyond Lists and Sets:
Keyed Collections

• Some collections have a way to look up each element, using the
element's key.

• For example:
• Each CD in a music collection could be looked up by title.

The title is the key

• Each student in the class could be looked up by name, or by student ID.
The name could be the key, or the ID could be the key

• Each entry in the dictionary can be looked up by the word the entry defines.
The word could be the key

• A collection that links keys to data is called a map, or sometimes
a table or a dictionary.

11/12/2003 (c) 2001-3, University of Washington P2-10

Maps In Java
• For a map to be possible, each item must have a key

• Each key must be unique!
Cannot have two different entries with the same key.

• Not always true in real life
so we often have to invent unique keys for things. (Can you think of any examples?)

• To implement a map...
• you could use a single array or ArrayList or HashSet, and search it to find

the element with a given key, or...
• you could use one of the existing classes in java.util: HashMap or TreeMap

• We will describe and use HashMap in CSE142
• Take CSE143 to find out about the funny name
• Take a database course to learn even more about keys and fancy ways of

organizing data for effective storage and retrieval
• Footnote for users of Perl, JavaScript, etc:

• Many such languages have "associative arrays": same basic concept as a
Map

11/12/2003 (c) 2001-3, University of Washington P2-11

Class HashMap
• The methods are sometimes different from the List and Set interface
• Note that keys must be Objects (inconvenient sometimes)
• Values are also Objects

public class HashMap {
// Return the number of key/value pairs in the map
public int size();

// Make key map to value in the map
// (either by adding a new mapping or by changing what key maps to)
public Object put(Object key, Object value);
// Return the value that key maps to, or null if it isn't in the map
public Object get(Object key);

// Return whether the argument object is a key of the map
public boolean containsKey(Object key);
// Return whether the argument object is a value in the map
public boolean containsValue(Object value);
// Remove key and the value it maps to from the map, if it was present
public boolean remove(Object key);
…

}

11/12/2003 (c) 2001-3, University of Washington P2-12

Building a HashMap

• Adding mappings:
HashMap addressBook = new HashMap();
addressBook.put("Willa", "123 Boat St.");

addressBook.put("Bill", "45 North Rd.");

addressBook.put("Susan", "653 45th Ave.");

• The picture (simplified, without blobs):

"45 North Rd."

"123 Boat St."

"653 45th Ave."

"Willa"

"Susan"

"Bill"

addressBook

Unordered Collections 11/12/2003

CSE142 03au 4Unordered

11/12/2003 (c) 2001-3, University of Washington P2-13

Examining a HashMap
HashMap addressBook = …;
…
String addr1 = (String) addressBook.get("Bill"); // what is addr1?
String addr2 = (String) addressBook.get("Bobbie"); // what is addr2?

if (addressBook.containsKey("Susan")) {
System.out.println((String) addressBook.get("Susan"));

}

addressBook.remove("Willa"); // what does the picture look like
now?

// Bill moves in with Susan:
addressBook.put("Bill", addressBook.get("Susan")); // what is the picture
now?

11/12/2003 (c) 2001-3, University of Washington P2-14

null
• Recall: in Java, there is a special value, null, which is used to

represent "nothing" or "undefined."
• Instance variables are initialized by default to null.
• Used only with references (objects), never with elementary types

• Many collection methods return null to mean that no such object
exists.

HashMap notesToMyself = new HashMap ();
…
String task = (String) notesToMyself.get("Most Important To-Do Item");
if (task == null) {

System.out.println("Nothing to do; go play!");
} else {

System.out.println("Get busy on " + task);
}

11/12/2003 (c) 2001-3, University of Washington P2-15

More HashMap Methods
public class HashMap {

…

// Return a Set (the interface of HashSet) of the keys of the map
public Set keySet();

// Return a Collection (the interface of all collections) of the values of the map
public Collection values();

…
}

11/12/2003 (c) 2001-3, University of Washington P2-16

Iterating through a HashMap
• Maps in Java do not have iterators (at least, not directly)
• To iterate through a map you can either...

• get the set of keys, and then iterate through them.
• get the set of values, and then iterate through them.

HashMap musicCollection = …;
…
Set titles = musicCollection.keySet(); // get the set of keys
Iterator iter = titles.iterator(); // get an iterator on the keys
while (iter.hasNext()) {

String title = (String) iter.next(); // get the next key
CD disk = (CD) musicCollection.get(title); // lookup the key
System.out.println("Now playing " + title);
disk.play();

}

