
CSE142 Wi03 F-1

1/10/2003 (c) 2001-3, University of Washington F-1

CSE 142

Class Implementation in Java

1/10/2003 (c) 2001-3, University of Washington F-2

Outline

• Implementing classes in Java
• Instance variables – properties
• Value-returning methods for queries
• Void methods for commands
• Return statement
• Assignment statement and arithmetic expressions
• Method parameters
• Constructors

1/10/2003 (c) 2001-3, University of Washington F-3

Specification vs Implementation - Review

• Specification – external view of an object/class
• View of the class as seen by client code (i.e., other code that

creates or uses instances – objects – of this class)
• Class name and method names, parameters, and descriptions

• Implementation – internal details private to the class
• Instance variables – properties
• Statements that describe algorithms carried out by methods

1/10/2003 (c) 2001-3, University of Washington F-4

Instance Variables

• Example in class BankAccount
private int number; // account number
private String name; // account name

private double balance; // current balance

• These are instance variable declarations
private <type> <identifier>

• private – part of the implementation, not visible outside
• <type> - the type of the variable
• <identifier> - a (hopefully meaningful) name for the variable

• Each object of class BankAccount will have its own set
of instance variables

CSE142 Wi03 F-2

1/10/2003 (c) 2001-3, University of Washington F-5

Implementing Methods for Simple Queries

• Example in class BankAccount
/** return the current balance of this BankAccount */
public double getBalance() {

return balance;

}

• When this method is executed, it replies with the value
of the instance variable balance

checking.getBalance()

1/10/2003 (c) 2001-3, University of Washington F-6

More About Value-Returning (Query) Methods

• Form
/** Comment specifying the method */
public <result type> <identifier> () {

list of statements
}

• Details
• public – this method is part of the public specification of the class (methods

can also be private; we’ll see examples eventually)
• <result type> – the type of the value returned by this query
• <identifier> – the (hopefully meaningful) name of this method

This is the name of the query that the method implements

• list of statements – the body of the method
These make up the algorithm that the method executes when it is called

1/10/2003 (c) 2001-3, University of Washington F-7

Return Statement

• First example of a statement
return expression ;

• Meaning
• Evaluate the expression to get a value

In getBalance, the expression is the name of the instance variable balance
For a variable, evaluation means get its current value

• Then, finish execution of this method (query), replying with the
value of the expression

1/10/2003 (c) 2001-3, University of Washington F-8

println vs return
public int tryPrintlnAndReturn() {

System.out.println(1);
return 2;
}

• What does this method print?
• What does this method return?
• Hint: Don’t go by how it looks in the Interactions pane of

Dr Java! What do you get if you type each of these:
tryPrintlnAndReturn()
tryPrintlnAndReturn();

CSE142 Wi03 F-3

1/10/2003 (c) 2001-3, University of Washington F-9

println, return Puzzlers: Which are Errors?
public void tryPrintlnAndReturn() { //A

System.out.println(1);
return 2;
}

public int tryPrintlnAndReturn() { //B
return 2;
System.out.println(1);
}

public void tryPrintlnAndReturn() { //C
System.out.println("1");
}

public int tryPrintlnAndReturn() { //D
System.out.println("1");
return "2";
} 1/10/2003 (c) 2001-3, University of Washington F-10

Arithmetic Expressions

• Basic components
• Literals – 17, 3.0, 1.023e23
• Variable names – value is the current value of the variable

• Operators (see book for all the details)
• +, -, *, /, % (remainder)

Gotchas: for ints, x/y yields integer part, dropping any fraction; x%y gives the remainder

• Operators have the usual precedence
For example, a + b * c is understood to mean a + (b * c)

• Binary operators (ones that have two components) are left associative : a *
b / c means (a * b) / c

Use parentheses where needed to override: a * (b / c)

• Mixing ints and doubles is normally ok – the int is converted to a double and
the calculation is done as a double

1/10/2003 (c) 2001-3, University of Washington F-11

Exercise – Another Query

• Complete the query in class BankAccount
/** return the name of this BankAccount */
public double getName() {

}

1/10/2003 (c) 2001-3, University of Washington F-12

Implementing Methods for Simple Commands

• Example in class BankAccount
/** Set this BankAccount’s name to newName */
public void setName(String newName) {

name = newName;

}

• When this method is executed, it changes the name
instance variable; it does not return a value
• Executed only for its effect

CSE142 Wi03 F-4

1/10/2003 (c) 2001-3, University of Washington F-13

More About Command Methods

• Form
/** Comment specifying the method */
public void <identifier> (parameters) {

list of statements
}

• Details
• public, <identifier>, and list of statements – same as for queries
• void – Indicates that this is a command that doesn’t return a

value (as opposed to the result type of a query)
• parameters – information supplied with command message

Same form as a variable declaration
(Note: Queries can also have parameters, but they have not been needed in the
simple cases we’ve seen so far)

1/10/2003 (c) 2001-3, University of Washington F-14

Assignment Statement

• Second example of a statement
variable = expression ;

• Meaning
• First, evaluate the expression to get a value
• Second, bind that value to the variable whose name appears on

the left
• These two steps are done in that order, not simultaneously
• Question: what does this mean (or do)?

count = count + 1;

1/10/2003 (c) 2001-3, University of Washington F-15

Exercise – Another Simple Command

• Complete the command in class BankAccount
/** Set this BankAccount’s number to newNumber */
public void setNumber(int newNumber) {

}

1/10/2003 (c) 2001-3, University of Washington F-16

Constructor

• Example in class BankAccount
/** Construct a new BankAccount with balance=number=0 and no name */
public BankAccount() {

number = 0;
name = “”;
balance = 0.0;

}

• This is a lot like a command method. Difference – it is
executed automatically each time a new BankAccount
instance is created
• Idea: Use the constructor to initialize newly created objects to

some sensible state
• Syntax difference from other methods: no result type or void

CSE142 Wi03 F-5

1/10/2003 (c) 2001-3, University of Washington F-17

Creating and Using BankAccount Objects

• Before going further, we’d better test what we’ve done
BankAccount savings = new BankAccount();
savings.setName(“A. Hacker”);

savings.setNumber(4200);

savings.getName();

1/10/2003 (c) 2001-3, University of Washington F-18

A Smarter Constructor

• Better would be to provide initial values for name, account
number, and balance when we create a BankAccount

• Solution: use parameters in the constructor
/** Construct a new BankAccount with given account name, number, and balance */
public BankAccount(String accountName, int accountNumber, double initialBalance) {

number = accountNumber;
name = accountName;
balance = initialBalance;

}

• Test
BankAccount checking = new BankAccount(“E. Fudd”, 4179, 42.17);
checking.getName();
checking.getBalance();

1/10/2003 (c) 2001-3, University of Washington F-19

Deposit – Another Command

• In class BankAccount
/** Deposit given amount in this BankAccount */
public void deposit(double amount) {

balance = balance + amount;

}

• Meaning is clear since expression in assignment
statement is evaluated before balance is changed

1/10/2003 (c) 2001-3, University of Washington F-20

Transfer – Objects as Parameters

• From class BankAccount
/** Transfer the given amount from otherAccount to this BankAccount */
public void transfer(double amount, BankAccount otherAccount) {

balance = balance + amount;
otherAccount.balance = otherAccount.balance – amount;

}

• Instance variable (field) access
objectName.variableName

is a reference to the given instance variable of the given
object
• Legal in the example because otherAccount is another instance

of BankAccount. Since transfer is part of class BankAccount,
it can access private information in any BankAccount

CSE142 Wi03 F-6

1/10/2003 (c) 2001-3, University of Washington F-21

Summary

• Implementation of classes
• Instance variables – type plus name
• Methods – statements that make up the body of each method

• Statements
• return
• Assignment & arithmetic expressions

• Creating objects and calling methods

• Coming attractions
• More details about objects, method calls, and variables
• More complex statements – conditionals and loops

