

Outline for Today

- Iteration - repeating operations
- Iteration in Java - while statement
- Shorthand for definite (counting) iterations - for statement
- Nested loops

1/10:2003	(1) 2001.3 , University of Westingon	${ }^{1.2}$

Programming a Teller Machine

- Suppose you are working on the code for a automated teller machine (ATM). Your code should give out the right number of bills when the user withdraws money. The ATM contains $\$ 20$ and $\$ 5$ bills.
- Problem: Hand out the right number of $\$ 20$ and $\$ 5$ bills to make up d dollars. Assume that d is a multiple of $\$ 5$.
- Best solution would use as many $\$ 20$ s as possible
- Design an algorithm for this with your neighbors

ATM Algorithm for Dispensing Money

- Design your solution(s) here

ATM Algorithm				
- Additional notes				

Iteration/Repetition

- The ATM cash algorithm is an example of an iteration or repetition - repeatedly perform some operation
- A few more examples
- Bake the roast; keep checking the internal temperature until it reaches 220 degrees
- While there are still donuts in the box, eat one
- Lather, rinse, repeat
- Simulations/games - science, entertainment Repeatedly update actions of objects in the simulation
- Video - display frames repeatedly
- Practically all interesting programs contain loops
(1) 2001. 3 , Univesitity of Yushington
1.6

Iteration in Java: while Syntax

- Basic form - while statement
while (condition) \{
list of statements
\}
- Terminology
- condition is sometimes called the loop condition
- list of statements is often called the loop body
the problem. Write down a brief description of your algorithm (without using Java code).

Iteration in Java
- Meaning of while (condition) \{ list of statements \} - Repeatedly do the following: - Evaluate the condition - If the condition is false, the loop terminates - execution continues with the statement following the loop body (after ' $\}$ ') - Execute the list of statements and repeat - Note: condition is only reevaluated after finishing the complete execution of the loop body - not concurrently as loop body statements are executed
11/02023 ${ }^{\text {a }}$

Flow Chart

Exercise - Write Numbers and Squares

- Suppose we want to write a table of numbers and their squares for the numbers 1 to 5
- Brute force ("+" used to combine strings)

System.out.println($1+$ " squared $=$ " $+1^{*} 1$);
System.out.println($2+$ " squared $=$ " $+2^{*}$);
System.out.println($3+$ " squared $="+3^{*} 3$);
System.out.printhn($4+$ " squared $=$ " $+4^{*}$);
System.out.println($5+$ " squared $=$ " $+5^{*} 5$);

- How could we improve this?

$1 / 1 / 0 / 2033$	(1) 2001.3, Univesisty of Wastinglon	1.11

What We're Really Trying to Do

- We really want to repeatedly execute

System.out.pinthn($(k$ " squared $=$ " $+k$ k k);
with k taking on the values 1 through 5 on successive repetitions

- Solution (?)
$k=1$;
while ($k<=5$) \{
System.out.println($k+$ " squared $=$ " $+k^{*} k$);
\}
- Does this work? How can we tell?

1/10:2003
1/00,2003
${ }^{1.12}$

Exercise
- In arithmetic, n ! (read as " n factorial") is defined to be $1 * 2 * 3 * 4^{*} \ldots *(n-1) * n$ - Exercise: write a loop to compute 7 ! and check it - Hint(?): try writing this out by hand, then figure out what statements can be repeated while some values in them change

| Loop to Calculate 7! |
| :--- | :--- |
| - Your code here |

Counting Loops - For Statement

- The loops we've seen so far all execute a definite number of times with some variable taking on a sequence of values
- Java, like most other languages, provides a special statement to make this convenient - the for statement
for (initialization; condition; update) \{
list of statements
\}

For Loops and While Loops

- A for statement is a convenient shorthand for an equivalent while statement
for (initialization; condition; update) \{
list of statements
\}
has (tor our puposes) exactly the same meaning as initialization;
while (condition) \{
list of statements update
\}
- Note that the update executes after the loop body

For Statement Flow Chart

Factorial as a Method

- A calculation like factorial is a logically coherent operation. It makes sense to package it as a method. Complete the implementation below using a for statement
/** Return the value n! */
public int factorial(int n)
\}

1/10,2003 (c) $2001 \cdot 3$, University of Wastignton ${ }^{1.21}$

Double Your Money

- Problem: Suppose you have invested $\$ 1000$ at 3% annual interest (meaning that each year, 3% of the present value of the investment is added to it). How many years will it take to double the original investment?
- Analysis: repeatedly increase the investment value by 3% until it reaches $\$ 2000$. Count how many times this has to be done.

A Non-Counting Iteration

- In this problem, the operation needs to be repeated until something happens (value $>=\$ 2000$)
- We don't know how long this will take
- This is an indefinite iteration - the number of repetitions needed is not known in advance
- A while loop is appropriate here

Analysis	
$1 / 10 / 203$	

| Multiplication Table Code |
| :--- | :--- |
| - Your Solution Here |
| |
| |
| |
| |
| |

| Multiplication Table Check |
| :--- | :--- |
| - Trace your code here |

