
CSE142 Wi03 J-1

4/28/2003 (c) 2001-3, University of Washington J-1

CSE 142

Declarations and Scope

4/28/2003 (c) 2001-3, University of Washington J-2

Outline for Today
• Goal: present more precisely several things we’ve dealt

with informally up to now
• Only essential topics for CSE142; won’t cover all the technical

details

• Scope defined
• Scope for instance variables and methods

• Public and private
• Using local methods
• Accessing instance variables in other objects
• “this”

• Scope for method parameters and local variables

4/28/2003 (c) 2001-3, University of Washington J-3

Declarations

• Everything in a Java program is referenced using an
identifier (name)

• New names must be declared
• Class declarations
• Method definitions and instance variable declarations in a class
• Parameter and local variable definitions in methods

4/28/2003 (c) 2001-3, University of Washington J-4

Scope

• The scope of a identifier is the region of the program
where that identifier's declaration is in effect

• Answers the question: where it is legal to use this
identifier?

• Scope limits the range of a declaration
• Allows sensible reuse of names (identifiers) in different parts of

the code

CSE142 Wi03 J-2

4/28/2003 (c) 2001-3, University of Washington J-5

Qualified and Unqualified Names
• If you’re at home and mention “Bob”, it usually means

your Uncle Bob who lives in Aberdeen.
• When your at quiz section and someone says “Bob”,

they probably are referring to a certain classmate in your
section

• If you need to be precise, you can specify “Uncle Bob”
or “the Bob in my quiz section”

• “Bob” by itself it an unqualified name. Its precise
meaning depends on context (where it is used)

• “Uncle Bob” is a qualified name. Its precise meaning is
much less dependent on context

4/28/2003 (c) 2001-3, University of Washington J-6

Qualified and Unqualified Names In Programs

num = myFarm.countSheep()

This statement contains three identifiers

The Java compiler has to determine exactly what these
identifiers refer to.

“num” is unqualified
“countSheep” is qualified by “myFarm”
“myFarm” is unqualified

4/28/2003 (c) 2001-3, University of Washington J-7

Three Big Principles

1. Scope is determined at compile-time
Not at run-time
We say it is “static” rather than “dynamic”

2. A name must be declared before it can be used
“Declaration before use” rule
The rule is bent in a few notable cases

3. Curly braces { } limit scope
For unqualified names, at least
A few, but important, exceptions

4/28/2003 (c) 2001-3, University of Washington J-8

Summary of Java Scope Rules

• The scope of classes: other classes in the program
• The scope of methods and instance variables: the class

containing the declaration and, possibly, other classes
• The scope of parameters and local variables: part or all

of the body of the method containing the declaration
• Minor exception for for-loop control variables

• We will look at some of this in a bit more detail now
• The full scope rules for Java are complex and are

discussed in increasing detail in 142 and 143.

CSE142 Wi03 J-3

4/28/2003 (c) 2001-3, University of Washington J-9

Methods and Instance Variables

• Declared inside a class
• Scope depends on whether declared public or private

• Always accessible inside the class
• Accessible to clients outside the class if declared public
• Not accessible to clients if declared private

• Inside the class, local methods and instance variables
can be referenced by their simple names

• Always use public or private in CSE142
• There are rules about what happens if you leave these off; we’ll

simplify our life by not dealing with them

4/28/2003 (c) 2001-3, University of Washington J-10

Example – Tile Class
public class Tile {

private int size; // tile size

/** add picture of this tile… */
public void addTo(…) {

…
display(…);

}

// draw a tile at the right place
private void display(..., Shape s, …) {

s.moveBy(…size…);
…

}

• Identifiers Tile and addTo are
visible inside and outside
class Tile

• Identifiers size and display are
only visible inside the class

4/28/2003 (c) 2001-3, University of Washington J-11

Parameters

• The scope of a parameter declaration is the body of the method or
constructor containing the parameter declaration

/** deposit amount in this BankAccount */
public void deposit(double amount) {

…
}
/** Construct new BankAccount with given name and account number */
public BankAccount(int accountNumber, String accountName,) {

…
}

• When the method is called, each parameter is initialized by
assigning it the corresponding argument value in the method call

BankAccount savings = new BankAccount(12, “D. Warbucks”);
savings.deposit(42.17);

4/28/2003 (c) 2001-3, University of Washington J-12

Nested Scopes

• The scope of a parameter declaration is “nested” inside
the scope of instance variables and methods belonging
to the class

• The diagrams we use for a method call are designed to
show this explicitly

• If a name is referenced in a method, to find the actual
thing it refers to
• First check the method scope
• Then, if you don’t find it, look at the surrounding class (object)

scope
• If still not found, it is not declared – compiler will complain

CSE142 Wi03 J-4

4/28/2003 (c) 2001-3, University of Washington J-13

Nested Scopes Diagramed

• Example
BankAccount savings = new BankAccount(567, “Rainy Day”);
savings.deposit(100.00);

4/28/2003 (c) 2001-3, University of Washington J-14

Nested Scope Pitfall

• Some (buggy) code
public class BankAccount {

private String name; // name on the account

/** set the account name */
public void setName(String name) {

name = name;
}

}

• What happens if we execute
BankAccount credit = new BankAccount(567, “Funny Money”);
credit.setName(“plastic”);

4/28/2003 (c) 2001-3, University of Washington J-15

Draw the Diagram

4/28/2003 (c) 2001-3, University of Washington J-16

Local Variables

• Local variables can be declared inside a method
• Provides scratch space for temporary values
• Scope extends to the right brace “}” matching the nearest

preceeding left brace “{”
This can hide a instance variable, parameter, or local variable declared in a
surrounding scope – generally bad style; don’t do it

• Variable no longer exists after leaving the scope
(in particular, parameters and local variables no longer exists after method
execution ends)

CSE142 Wi03 J-5

4/28/2003 (c) 2001-3, University of Washington J-17

Example
/** return the weekly pay of this Employee */

public double getWeeklyPay() {
double basePay;
double overtimePay;
if (hours <= 40) {

basePay = hours * rate; // hours, rate are instance variables
overtimePay = 0.0;

} else {
basePay = 40 * rate;

overtimePay = 1.5 * (hours-40) * rate;
}
return basePay + overtimePay;

}

4/28/2003 (c) 2001-3, University of Washington J-18

Trace
Employee intern = new Employee(…);

System.out.println(intern.getWeeklyPay());

4/28/2003 (c) 2001-3, University of Washington J-19

Variable Declaration with Initialization

• A variable declaration can also specify an initial value
/** Return the area of the circle with given diameter */
public double area(double diameter) {

double radius = diameter / 2.0;
return 3.14 * radius * radius;

}

• Common for temporary quantities used inside a method
• Can make code easier to read if you name intermediate results

by declaring and initializing appropriate local variables

• Not common for instance variables
• Better style is to put all initializations inside the constructor(s)

4/28/2003 (c) 2001-3, University of Washington J-20

Scopes and Initialization

• What happens here?
/** return the weekly pay of this Employee */
public double getWeeklyPay() {

if (hours <= 40) {
double basePay = hours * rate;
double overtimePay = 0.0;

} else {
double basePay = 40 * rate;
double overtimePay = 1.5 * (hours-40) * rate;

}
return basePay + overtimePay;

}

• (Hint: what is the scope of a local variable declaration?)

CSE142 Wi03 J-6

4/28/2003 (c) 2001-3, University of Washington J-21

Scopes and Multiple Objects

• Each object defines a separate scope for its instance
variables and methods

• A method or instance variable in another object can be
accessed (if it is public or in the same class) by writing

objectName . methodName (…);

• or
objectName . variableName

• When a method executes, its local scope is surrounded
by the scope of the corresponding object

4/28/2003 (c) 2001-3, University of Washington J-22

Example: BankAccount Transfer
class BankAccount {

…
/** Transfer given amount from otherAccount */
public void transferFrom(BankAccount otherAccount, double amount) {

boolean success = otherAccount.withdraw(amount);

if (success) {
balance = balance + amount;

}
}

4/28/2003 (c) 2001-3, University of Washington J-23

Execution Example
BankAccount yours = new BankAccount(567, “Moneybags”);

yours.deposit(5000.00);
BankAccount mine = new BankAccount(1234, “Me”);
mine.transferFrom(yours, 2000.00);

4/28/2003 (c) 2001-3, University of Washington J-24

Another Implementation of Transfer
class BankAccount {

…
/** Transfer given amount from otherAccount */
public void transferFrom(BankAccount otherAccount, double amount) {

if (otherAccount.balance >= amount) {

otherAccount.balance = otherAccount.balance – amount;
balance = balance + amount;

}
}

• Discuss: Is this better or worse than using
otherAccount.withdraw(…)? Why or why not?

CSE142 Wi03 J-7

4/28/2003 (c) 2001-3, University of Washington J-25

Method and Instance Variable Names, Revisited

• When we write something like
name = otherAccount.name;

• or
otherAccount.balance = balance;

the occurrence of “name” or “balance” refers to fields in
the current object scope where the method is executing

• But technically, every method or instance variable has a
full name which is always objectName . fieldName.

• When we use a simple name like balance by itself, we
really mean

“the current object” . balance

4/28/2003 (c) 2001-3, University of Washington J-26

“The Current Object” – this

• Java has a reserved keyword, this, that can be used to
explicitly refer to “the current object”

• If we use a field name by itself
balance = 42.17;

it is equivalent to writing
this.balance = 42.17;

• You can write this explicitly if you want. If you don’t,
Java understands that that is what you mean

4/28/2003 (c) 2001-3, University of Washington J-27

A Common Use for this

• Normally instance variables and local variables or
parameters should not have the same name

(Style/readability issue)

• But in constructors, it’s often more readable if parameter
names are the same as the fields they initialize

• Use “this” to access an instance variable whose scope
is masked by a local parameter declaration

/** construct a new BankAccount with the given name and number */
public BankAccount(int number, String name) {

this.number = number;
this.name = name;

}

4/28/2003 (c) 2001-3, University of Washington J-28

Scope Rules and This

• Trace execution of
BankAccount test = new BankAccount(654, “scope demo”);

CSE142 Wi03 J-8

4/28/2003 (c) 2001-3, University of Washington J-29

Summary

• Scope – the region of code in which a declaration has an
effect
• Class scope – instance variable, methods

• Can be public (accessible outside the class) or private (only accessible inside)

• Can be masked by method parameters or local variables with the same name
• “this” –refers to the current object; use to access names with class scope

• Local scope – method parameters and local variables
• Scope is all or part of the method containing the declaration
• Can mask declarations in surrounding scopes (generally bad style, except in
specific cases)

