CSE 142

Declarations and Scope

Outline for Today
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+ Goal: present more precisely several things we've dealt
with informally up to now

« Only essential topics for CSE142; won’t cover all the technical
details

+ Scope defined
» Scope for instance variables and methods
« Public and private
« Using local methods
« Accessing instance variables in other objects
« “this”
+ Scope for method parameters and local variables
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Declarations

s Everything in a Java program is referenced using an
identifier (name)

» New names must be declared
« Class declarations
» Method definitions and instance variable declarations in a class
« Parameter and local variable definitions in methods

Scope
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* The scope of a identifier is the region of the program
where that identifier's declaration is in effect

+ Answers the question: where it is legal to use this
identifier?

+ Scope limits the range of a declaration

« Allows sensible reuse of names (identifiers) in different parts of
the code
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Quialified and Unqualified Names

« If you're at home and mention “Bob”, it usually means
your Uncle Bob who lives in Aberdeen.

» When your at quiz section and someone says “Bob”,
they probably are referring to a certain classmate in your
section

« If you need to be precise, you can specify “Uncle Bob”
or “the Bob in my quiz section”

* “Bob” by itself it an unqualified name. Its precise
meaning depends on context (where it is used)

+“Uncle Bob” is a qualified name. Its precise meaning is
much less dependent on context

Qualified and Unqualified Names In Programs
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num = myFarm.countSheep( )
This statement contains three identifiers

The Java compiler has to determine exactly what these
identifiers refer to.

“num” is unqualified
“countSheep” is qualified by “myFarm”
“myFarm” is unqualified
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Three Big Principles

1. Scope is determined at compile-time
Not at run-time
We say itis “static” rather than “dynamic”
2. A name must be declared before it can be used
“Declaration before use” rule
The rule is bent in a few notable cases
3. Curly braces { } limit scope
For unqualified names, at least
A few, but important, exceptions

Summary of Java Scope Rules
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* The scope of classes: other classes in the program

* The scope of methods and instance variables: the class
containing the declaration and, possibly, other classes

* The scope of parameters and local variables: part or all
of the body of the method containing the declaration
* Minor exception for for-loop control variables

» We will look at some of this in a bit more detail now

* The full scope rules for Java are complex and are
discussed in increasing detail in 142 and 143.
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Methods and Instance Variables

Example - Tile Class

+ Declared inside a class

+ Scope depends on whether declared public or private
« Always accessible inside the class
« Accessible to clients outside the class if declared public
« Not accessible to clients if declared private

+Inside the class, local methods and instance variables
can be referenced by their simple names

+ Always use public or private in CSE142

« There are rules about what happens if you leave these off; we’'ll
simplify our life by not dealing with them

public class Tile {
private int size; // tile size

** add picture of this tile... */
public void addTo(...) {

« Identifiers Tile and addTo are
visible inside and outside
class Tile

« Identifiers size and display are
only visible inside the class

display(..);
)

Il draw a tile at the right place
private void display(..., Shape s, ...)
s.moveBy(...size...);

—

}
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Parameters

Nested Scopes

* The scope of a parameter declaration is the body of the method or
constructor containing the parameter declaration
** deposit amount in this BankAccount */
public void deposit(double amount) {

}
** Construct new BankAccount with given name and account number */
public BankAccount(int accountNumber, String accountName,) {

}
» When the method is called, each parameter is initialized by
assigning it the corresponding argument value in the method call
BankAccount savings = new BankAccount(12, “D. Warbucks");
savings.deposit(42.17);

* The scope of a parameter declaration is “nested” inside
the scope of instance variables and methods belonging
to the class

* The diagrams we use for a method call are designed to
show this explicitly

«If a name is referenced in a method, to find the actual
thing it refers to

« First check the method scope

* Then, if you don’t find it, look at the surrounding class (object)
scope

« If still not found, it is not declared — compiler will complain
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Nested Scopes Diagramed

Nested Scope Pitfall

s Example
BankAccount savings = new BankAccount(567, “Rainy Day”);
savings.deposit(100.00);

» Some (buggy) code
public class BankAccount {
private String name;
/** set the account name */
public void setName(String name) {
name = name;

}

/I name on the account

}

» What happens if we execute
BankAccount credit = new BankAccount(567, “Funny Money”);
credit.setName(“plastic”);
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Draw the Diagram

Local Variables
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+ Local variables can be declared inside a method
« Provides scratch space for temporary values
« Scope extends to the right brace “}” matching the nearest
preceeding left brace “{”
This can hide a instance variable, parameter, or local variable declared in a
surrounding scope — generally bad style; don't do it
« Variable no longer exists after leaving the scope

(in particular, parameters and local variables no longer exists after method
execution ends)
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Example

Trace

** return the weekly pay of this Employee */
public double getWeeklyPay( ) {
double basePay;
double overtimePay;
if (hours <= 40) {
basePay = hours * rate;
overtimePay = 0.0;
}else {
basePay = 40 * rate;
overtimePay = 1.5 * (hours-40) * rate;

}

return basePay + overtimePay;

II'hours, rate are instance variables

}

Employee intern = new Employee...);
System.out.printin(intem.getWeeklyPay());
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Variable Declaration with Initialization

Scopes and Initialization

+ A variable declaration can also specify an initial value
** Return the area of the circle with given diameter */
public double area(double diameter ) {
double radius = diameter/ 2.0;
return 3.14 * radius * radius;

}
» Common for temporary quantities used inside a method
« Can make code easier to read if you name intermediate results
by declaring and initializing appropriate local variables
+ Not common for instance variables
« Better style is to put all initializations inside the constructor(s)

» What happens here?
** return the weekly pay of this Employee */
public double getWeeklyPay( ) {
if (hours <= 40) {
double basePay = hours * rate;
double overtimePay = 0.0;
}else {
double basePay = 40 * rate;
double overtimePay = 1.5 * (hours-40) * rate;
}
return basePay + overtimePay;
}
« (Hint: what is the scope of a local variable declaration?)
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Scopes and Multiple Objects

« Each object defines a separate scope for its instance
variables and methods

+ A method or instance variable in another object can be
accessed (if it is public or in the same class) by writing
objectName . methodName ( ... );
e or
objectName . variableName
» When a method executes, its local scope is surrounded
by the scope of the corresponding object

Example: BankAccount Transfer
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class BankAccount {

[** Transfer given amount from otherAccount */
public void transferFrom(BankAccount otherAccount, double amount) {
boolean success = otherAccount.withdraw(amount);
if (success) {
balance = balance + amount;
}
}
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Execution Example

BankAccount yours = new BankAccount(567, “Moneybags”);
yours.deposit(5000.00);

BankAccount mine = new BankAccount(1234, “Me”);
mine.transferFrom(yours, 2000.00);

Another Implementation of Transfer
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class BankAccount {

[** Transfer given amount from otherAccount */
public void transferFrom(BankAccount otherAccount, double amount) {
if (otherAccount.balance >= amount) {
otherAccount.balance = otherAccount.balance — amount;
balance = balance + amount;
}
}

« Discuss: Is this better or worse than using
otherAccount.withdraw(...)? Why or why not?
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Method and Instance Variable Names, Revisited

» When we write something like
name = otherAccount.name;
s or
otherAccount.balance = balance;
the occurrence of “name” or “balance” refers to fields in
the current object scope where the method is executing
* But technically, every method or instance variable has a
full name which is always objectName . fieldName.
» When we use a simple name like balance by itself, we

really mean
“the current object” . balance
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“The Current Object” - this

+ Java has a reserved keyword, this, that can be used to
explicitly refer to “the current object”
« If we use a field name by itself
balance = 42.17;
it is equivalent to writing
this.balance = 42.17;
* You can write this explicitly if you want. If you don't,
Java understands that that is what you mean
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A Common Use for this

+ Normally instance variables and local variables or
parameters should not have the same name
(Style/readability issue)
+ But in constructors, it's often more readable if parameter
names are the same as the fields they initialize

+ Use “this” to access an instance variable whose scope
is masked by a local parameter declaration
[** construct a new BankAccount with the given name and number */
public BankAccount(int number, String name) {
this.number = number;
this.name = name;

}

Scope Rules and This
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* Trace execution of
BankAccount test = new BankAccount(654, “scope dema”);
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Summary

* Scope - the region of code in which a declaration has an
effect

« Class scope - instance variable, methods
« Can be public (accessible outside the class) or private (only accessible inside)
« Can be masked by method parameters or local variables with the same name
« “this” —refers to the current object; use to access names with class scope

« Local scope — method parameters and local variables
« Scope is all or part of the method containing the declaration

« Can mask declarations in surrounding scopes (generally bad style, except in
specific cases)
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