CSE 142

Declarations and Scope

Outline for Today

412812003 () 20013, University of Washington 1

+ Goal: present more precisely several things we've dealt
with informally up to now

« Only essential topics for CSE142; won’t cover all the technical
details

+ Scope defined
» Scope for instance variables and methods
« Public and private
« Using local methods
« Accessing instance variables in other objects
« “this”
+ Scope for method parameters and local variables

412812003 () 20013, University of Washington)2

Declarations

s Everything in a Java program is referenced using an
identifier (name)

» New names must be declared
« Class declarations
» Method definitions and instance variable declarations in a class
« Parameter and local variable definitions in methods

Scope

412812003 () 20013, University of Washington I3

* The scope of a identifier is the region of the program
where that identifier's declaration is in effect

+ Answers the question: where it is legal to use this
identifier?

+ Scope limits the range of a declaration

« Allows sensible reuse of names (identifiers) in different parts of
the code

412812003 () 20013, University of Washington 34

CSE142 Wi03

J-1

Quialified and Unqualified Names

« If you're at home and mention “Bob”, it usually means
your Uncle Bob who lives in Aberdeen.

» When your at quiz section and someone says “Bob”,
they probably are referring to a certain classmate in your
section

« If you need to be precise, you can specify “Uncle Bob”
or “the Bob in my quiz section”

* “Bob” by itself it an unqualified name. Its precise
meaning depends on context (where it is used)

+“Uncle Bob” is a qualified name. Its precise meaning is
much less dependent on context

Qualified and Unqualified Names In Programs

412812003 () 20013, University of Washington 5

num = myFarm.countSheep()
This statement contains three identifiers

The Java compiler has to determine exactly what these
identifiers refer to.

“num” is unqualified
“countSheep” is qualified by “myFarm”
“myFarm” is unqualified

412812003 () 20013, University of Washington 6

Three Big Principles

1. Scope is determined at compile-time
Not at run-time
We say itis “static” rather than “dynamic”
2. A name must be declared before it can be used
“Declaration before use” rule
The rule is bent in a few notable cases
3. Curly braces { } limit scope
For unqualified names, at least
A few, but important, exceptions

Summary of Java Scope Rules

412812003 () 20013, University of Washington 7

* The scope of classes: other classes in the program

* The scope of methods and instance variables: the class
containing the declaration and, possibly, other classes

* The scope of parameters and local variables: part or all
of the body of the method containing the declaration
* Minor exception for for-loop control variables

» We will look at some of this in a bit more detail now

* The full scope rules for Java are complex and are
discussed in increasing detail in 142 and 143.

412812003 () 20013, University of Washington)8

CSE142 Wi03

J-2

Methods and Instance Variables

Example - Tile Class

+ Declared inside a class

+ Scope depends on whether declared public or private
« Always accessible inside the class
« Accessible to clients outside the class if declared public
« Not accessible to clients if declared private

+Inside the class, local methods and instance variables
can be referenced by their simple names

+ Always use public or private in CSE142

« There are rules about what happens if you leave these off; we’'ll
simplify our life by not dealing with them

public class Tile {
private int size; // tile size

** add picture of this tile... */
public void addTo(...) {

« Identifiers Tile and addTo are
visible inside and outside
class Tile

« Identifiers size and display are
only visible inside the class

display(..);
)

Il draw a tile at the right place
private void display(..., Shape s, ...)
s.moveBy(...size...);

—

}

412812003 () 20013, University of Washington 39

412812003 () 20013, University of Washington 310

Parameters

Nested Scopes

* The scope of a parameter declaration is the body of the method or
constructor containing the parameter declaration
** deposit amount in this BankAccount */
public void deposit(double amount) {

}
** Construct new BankAccount with given name and account number */
public BankAccount(int accountNumber, String accountName,) {

}
» When the method is called, each parameter is initialized by
assigning it the corresponding argument value in the method call
BankAccount savings = new BankAccount(12, “D. Warbucks");
savings.deposit(42.17);

* The scope of a parameter declaration is “nested” inside
the scope of instance variables and methods belonging
to the class

* The diagrams we use for a method call are designed to
show this explicitly

«If a name is referenced in a method, to find the actual
thing it refers to

« First check the method scope

* Then, if you don’t find it, look at the surrounding class (object)
scope

« If still not found, it is not declared — compiler will complain

412812003 () 20013, University of Washington a1

412812003 () 20013, University of Washington)12

CSE142 Wi03

Nested Scopes Diagramed

Nested Scope Pitfall

s Example
BankAccount savings = new BankAccount(567, “Rainy Day”);
savings.deposit(100.00);

» Some (buggy) code
public class BankAccount {
private String name;
/** set the account name */
public void setName(String name) {
name = name;

}

/I name on the account

}

» What happens if we execute
BankAccount credit = new BankAccount(567, “Funny Money”);
credit.setName(“plastic”);

412812003 () 20013, University of Washington

412812003 () 20013, University of Washington)14

Draw the Diagram

Local Variables

412812003 () 20013, University of Washington

+ Local variables can be declared inside a method
« Provides scratch space for temporary values
« Scope extends to the right brace “}” matching the nearest
preceeding left brace “{”
This can hide a instance variable, parameter, or local variable declared in a
surrounding scope — generally bad style; don't do it
« Variable no longer exists after leaving the scope

(in particular, parameters and local variables no longer exists after method
execution ends)

412812003 () 20013, University of Washington)16

CSE142 Wi03

J-4

Example

Trace

** return the weekly pay of this Employee */
public double getWeeklyPay() {
double basePay;
double overtimePay;
if (hours <= 40) {
basePay = hours * rate;
overtimePay = 0.0;
}else {
basePay = 40 * rate;
overtimePay = 1.5 * (hours-40) * rate;

}

return basePay + overtimePay;

II'hours, rate are instance variables

}

Employee intern = new Employee...);
System.out.printin(intem.getWeeklyPay());

412812003 () 20013, University of Washington 17

412812003 () 20013, University of Washington

Variable Declaration with Initialization

Scopes and Initialization

+ A variable declaration can also specify an initial value
** Return the area of the circle with given diameter */
public double area(double diameter) {
double radius = diameter/ 2.0;
return 3.14 * radius * radius;

}
» Common for temporary quantities used inside a method
« Can make code easier to read if you name intermediate results
by declaring and initializing appropriate local variables
+ Not common for instance variables
« Better style is to put all initializations inside the constructor(s)

» What happens here?
** return the weekly pay of this Employee */
public double getWeeklyPay() {
if (hours <= 40) {
double basePay = hours * rate;
double overtimePay = 0.0;
}else {
double basePay = 40 * rate;
double overtimePay = 1.5 * (hours-40) * rate;
}
return basePay + overtimePay;
}
« (Hint: what is the scope of a local variable declaration?)

412812003 () 20013, University of Washington 19

412812003 () 20013, University of Washington

CSE142 Wi03

J-5

Scopes and Multiple Objects

« Each object defines a separate scope for its instance
variables and methods

+ A method or instance variable in another object can be
accessed (if it is public or in the same class) by writing
objectName . methodName (...);
e or
objectName . variableName
» When a method executes, its local scope is surrounded
by the scope of the corresponding object

Example: BankAccount Transfer

412812003 () 20013, University of Washington J21

class BankAccount {

[** Transfer given amount from otherAccount */
public void transferFrom(BankAccount otherAccount, double amount) {
boolean success = otherAccount.withdraw(amount);
if (success) {
balance = balance + amount;
}
}

412812003 () 20013, University of Washington)22

Execution Example

BankAccount yours = new BankAccount(567, “Moneybags”);
yours.deposit(5000.00);

BankAccount mine = new BankAccount(1234, “Me”);
mine.transferFrom(yours, 2000.00);

Another Implementation of Transfer

412812003 () 20013, University of Washington)23

class BankAccount {

[** Transfer given amount from otherAccount */
public void transferFrom(BankAccount otherAccount, double amount) {
if (otherAccount.balance >= amount) {
otherAccount.balance = otherAccount.balance — amount;
balance = balance + amount;
}
}

« Discuss: Is this better or worse than using
otherAccount.withdraw(...)? Why or why not?

412812003 () 20013, University of Washington)24

CSE142 Wi03

J-6

Method and Instance Variable Names, Revisited

» When we write something like
name = otherAccount.name;
s or
otherAccount.balance = balance;
the occurrence of “name” or “balance” refers to fields in
the current object scope where the method is executing
* But technically, every method or instance variable has a
full name which is always objectName . fieldName.
» When we use a simple name like balance by itself, we

really mean
“the current object” . balance

412812003 () 20013, University of Washington)25

“The Current Object” - this

+ Java has a reserved keyword, this, that can be used to
explicitly refer to “the current object”
« If we use a field name by itself
balance = 42.17;
it is equivalent to writing
this.balance = 42.17;
* You can write this explicitly if you want. If you don't,
Java understands that that is what you mean

412812003 () 20013, University of Washington 126

A Common Use for this

+ Normally instance variables and local variables or
parameters should not have the same name
(Style/readability issue)
+ But in constructors, it's often more readable if parameter
names are the same as the fields they initialize

+ Use “this” to access an instance variable whose scope
is masked by a local parameter declaration
[** construct a new BankAccount with the given name and number */
public BankAccount(int number, String name) {
this.number = number;
this.name = name;

}

Scope Rules and This

412812003 () 20013, University of Washington)21

* Trace execution of
BankAccount test = new BankAccount(654, “scope dema”);

412812003 () 20013, University of Washington)28

CSE142 Wi03

J-7

Summary

* Scope - the region of code in which a declaration has an
effect

« Class scope - instance variable, methods
« Can be public (accessible outside the class) or private (only accessible inside)
« Can be masked by method parameters or local variables with the same name
« “this” —refers to the current object; use to access names with class scope

« Local scope — method parameters and local variables
« Scope is all or part of the method containing the declaration

« Can mask declarations in surrounding scopes (generally bad style, except in
specific cases)

412812003 () 20013, University of Washington 329

CSE142 Wi03

