
CSE142 UW L-1

11/13/2003 (c) 2001-3, University of Washington L-1

CSE 142

Introduction to Collections – ArrayLists

11/13/2003 (c) 2001-3, University of Washington L-2

Outline for Today

• Collections of data
• APIs
• ArrayLists
• Technicalities

• Objects
• casts
• reference vs primitive types

11/13/2003 (c) 2001-3, University of Washington L-3

Collections in the Real World

• Think about:
• words in a dictionary
• list of students in a class
• deck of cards
• books in a library
• MP3 files on a computer

• These things are all collections
• They contain multiple instances of like objects
• Some collections are ordered, others are unordered

11/13/2003 (c) 2001-3, University of Washington L-4

Collections in Some Familiar Models

• Bank, BankAccount

• Student, Registration

• Airplan factory

• Cell Phone, Media Player

CSE142 UW L-2

11/13/2003 (c) 2001-3, University of Washington L-5

Some Common Types of Collections

• Collections may or ordered or unordered
• Some collections are “sets”

• no inherent order
• duplicate elements not allowed

• A very common collection type is a list
• Elements in a list are in a definite order, one after another

11/13/2003 (c) 2001-3, University of Washington L-6

Collections and Libraries in Java
• The Java language does not have special keywords or syntax for

collections
• Collections and lists are available in Java programs through class

libraries that are part of every Java implementation
• There are standard Java class libraries for dozens or hundreds of

purposes
• Math
• Graphics
• Networking
• Files
• Collections
• etc., etc.

11/13/2003 (c) 2001-3, University of Washington L-7

More About APIs
• The phrase API (application programming interface) is commonly

used to designate a set of classes and methods
• To be an effective Java programmer, you must use APIs!
• Must learn how to use them

• What to expect
• Requirements and conventions of programming
• Conventions of documentation

• Must learn specifics of particular APIs
• Which classes and methods are available
• The internal model of the application

• A long-range goal of 142/143 is to make you confident about
using APIs

11/13/2003 (c) 2001-3, University of Washington L-8

An Ordered Collection in Java: ArrayList

• ArrayList is a Java class whose instances store an
ordered collection of things

• ArrayList is one of a number of standard Java library
classes for collections

• You can add objects to an ArrayList object and get them
back out

• No limit to the length of a list

CSE142 UW L-3

11/13/2003 (c) 2001-3, University of Washington L-9

Some ArrayList Methods
• The specification for ArrayList tells us what methods are

available. A few of the methods:
public class ArrayList

// Create an empty collection
public ArrayList();

// Add the given object to the end of this collection
public void add(Object o);

// Return the size of this collection
public int size();
…

}

• New: Object type – means any kind of object at all
11/13/2003 (c) 2001-3, University of Washington L-10

Using ArrayLists
• Creating a list: ArrayList is a class, and we need an instance of

the class (object) to store data:
ArrayList names = new ArrayList ();

• Adding things:
names.add("Billy");
names.add("Susan");
names.add("Frodo");

• Getting the size:
int numberOfNames = names.size();

• If you try typing the above into Dr. Java... it won’t (quite) work!

11/13/2003 (c) 2001-3, University of Washington L-11

The import Statement
• ArrayList is not a keyword of Java
• Any classes not defined in your own program must be

imported
• The import statement tells the compiler which library or

external classes you want to use
• ArrayList is in a “package” called java.util
• Write import java.util.*; to use classes of the java.util

package
• All import statements must be at the beginning of the

.java file
• In DrJava’s interaction window, you can type them anytime

11/13/2003 (c) 2001-3, University of Washington L-12

Drawing Diagrams
• Diagrams are useful for

• Describing
• Communicating
• Understanding

• Many types of diagrams are possible for various situations
• In CSE14x, we often draw a diagram to show the relationships

between names and objects
• These are “dynamic” in the sense that

• they depict the program at run-time, not at compile-time
• they capture one particular instant of execution
• they focus on the relationship between objects, not classes
• Such a diagram can change after each statement execution, or even during

statement execution

CSE142 UW L-4

11/13/2003 (c) 2001-3, University of Washington L-13

Groundrules

• Each object is a blob; each blob is an object
• Arrows go from names to objects
• Local variable names are freefloating
• Instance variable names are written inside their object

blob
• Primitive values are not blobs

• Write primitive values close to their names
• Some people use a small box, others use an arrow

11/13/2003 (c) 2001-3, University of Washington L-14

Drawing Dynamic Status Diagrams
• DO...
• Draw a separate blob for each object

• One blob, one object
• Label each blob with its type
• Write each local variable name

floating free
• Draw an arrow from a name to the

object it refers to
• Draw a rectangle to show a class (if

needed)
• Write instance variable names inside

their class blob
• or free-floating if the blob is not

drawn
• Remember that Strings are objects

• DON’T...
• draw one blob inside another –

ever!
• complicate the drawing with

unused or unnecessary details
• draw arrows between blobs
• draw arrows between names
• draw blobs for primitive values
• write variable names inside

boxes or as labels to boxes

11/13/2003 (c) 2001-3, University of Washington L-15

ArrayList Diagrams

• The indexes of an ArrayList are a form of name
• Inside the blob for an ArrayList object, write the indexes

in a row
• Show only the indexes that are actually in use (i.e. which are

not currently out of bounds)

• Draw an arrow from each index to the object it refers to

• PS We will elaborate this picture later in the course, after
studying arrays.

11/13/2003 (c) 2001-3, University of Washington L-16

More ArrayList Methods

• Here's more of its interface:
public class ArrayList {

…

// Return the object at the given index (numbered starting from 0, not 1!).
// Raise an exception if index is out-of-bounds.
public Object get(int index);

// Change the object at the given index (starting from 0) to be newElement.
// Raise an exception if index isn't in bounds.
// Return the element that used to be there.
public Object set(int index, Object newElement);

}

CSE142 UW L-5

11/13/2003 (c) 2001-3, University of Washington L-17

Using Indexes with ArrayLists
• ArrayLists provide indexed access. We can ask for a

particular item in the list by its position or index number
• The first item is at index 0, the second at index 1, and

the last item is at index n-1 (where n is the size).

ArrayList names = new ArrayList ();
names.add("Billy");
names.add("Susan");

• Java expressions:
names.get(0)
names.get(1)

11/13/2003 (c) 2001-3, University of Washington L-18

A Problem

• Let's say we want to get something out of an ArrayList
and assign it to a variable

• We might write the following:
String name = names.get(0);
System.out.println("The first name is " + name);

• But Java complains about the green line:
"incompatible types: found: Object, required: String”

(DrJava’s interactions window allows this without complaining, even though it’s
not legal in regular Java)

• Why? [Hint: look at the interface of the get method]

11/13/2003 (c) 2001-3, University of Washington L-19

Problem: Object

• The return type of method get() is Object.
• Think of Object as Java's way of saying "any type".
• All classes in Java (including the ones we write) have an

"is-a" relationship to Object. In other words:
• every String is an Object
• every Rectangle is an Object
• every ArrayList is an Object

• The reverse is not generally true!
• every Object is not necessarily a String

11/13/2003 (c) 2001-3, University of Washington L-20

Making False Claims

• Looks weird, but is legal…
Object someObject = new Soap(. . .);

… because every Soap is an Object.

• In our example:
String name = names.get(0);
System.out.println("The first name is " + name);

• We are claiming that an Object (the result of get) is a
String, which is not necessarily true!
• What if we passed an ArrayList of Soap to printFirstName?

CSE142 UW L-6

11/13/2003 (c) 2001-3, University of Washington L-21

Making Promises: Casting

• It looks like we're stuck. We can add things to the
collection, but we can't get them back out!

• The solution is to make a promise
• Say that we know that we've only placed String objects into the

ArrayList.
• We can promise the compiler that the thing coming back out of

the ArrayList is actually a String
String name = (String)names.get(0);

System.out.println("The first name is " + name);

• This is (another use of) a cast

11/13/2003 (c) 2001-3, University of Washington L-22

Casting (Review)
• Pattern:

(<class-name>)<expression>

• Example:
String name = (String)names.get(0);

• Casting does not change the object or the type of the
object.

• It is a promise that the object really is of the stated type.

• Casting also used for conversions, as we've seen.
(int) 3.1415927

11/13/2003 (c) 2001-3, University of Washington L-23

Miscasting
• We can abuse casting, but it will be caught at runtime.

String name = (String)names.get(0);
System.out.println("The first name is " + name);

Rectangle box = (BankAccount)names.get(0); // Run time error!!
System.out.println("The length is " + box.getLength());

• An error called a "class cast exception" occurs if a
promise is broken.
• Footnote: “Exceptions” are one way that programs signal that

something unexpected or undesirable has occured (CSE143
topic)

11/13/2003 (c) 2001-3, University of Washington L-24

Reference vs. Primitive Types
• A few Java types are primitive

int, double, char, boolean, and a few other numeric types (see textbook)

• Are atomic chunks, with no parts (i.e., no instance variables)
• Exist without having to be allocated with new
• Cannot receive messages (i.e., do not have methods) but can

be arguments of messages and unary and binary operators
• All others are reference types

Rectangle, BankAccount, Color, String, etc.

• Instances of some class
• Created by new
• Can have instance variables and methods
• All are special cases of the generic type “Object”

CSE142 UW L-7

11/13/2003 (c) 2001-3, University of Washington L-25

When Does the Distinction Matter?

• One place: when putting values in collections
ArrayList list = new ArrayList();
list.add(5); // error: int isn't an Object

• The way ArrayList is defined, only objects can be added
to the list
• Reminder: true objects have a “reference type”

11/13/2003 (c) 2001-3, University of Washington L-26

Using Wrapper Classes

• There is a solution
• If we really need to put a primitive value in an ArrayList:

create a wrapper object containing the primitive value.
• There is a wrapper class for each primitive type, e.g.

Integer for int, Double for double, etc.
ArrayList list = new ArrayList();

Integer five = new Integer(5); // create an Integer object with a 5 in it
list.add(five); // ok: Integer is an Object

…

Integer firstElem = (Integer) list.get(0); // promise that the Object is an Integer

int v = firstElem.intValue(); // extract the int value from the Integer object

11/13/2003 (c) 2001-3, University of Washington L-27

Summary

• Collections: Many kinds
• Common in computer programs
• Often correspond to collections of objects in the real world

• A simple collection: ArrayList
• Sequential, ordered collection
• Part of the java.util package of classes
• Many methods: add, get, size, isEmpty, … (see Sun Java Docs)
• import. java.util.*; to access

• Casts
• Often needed to specify actual type of object retrieved from a collection

(since collection can hold any kind of object)

• Primitive vs. reference types: need to place primitive values in
wrapper objects if we want to store them in a collection

