
CSE142 Wi03 M-1

5/11/2003 (c) 2001-3, University of Washington M-1

CSE 142

Iterators

5/11/2003 (c) 2001-3, University of Washington M-2

Outline for Today
• Quick Review

• ArrayList collections; add, size, get, etc. methods
• Iteration and while loops

• Today
• Iterating through collections
• Iterator objects

5/11/2003 (c) 2001-3, University of Washington M-3

Using Collections
• We can create ArrayLists, and put things into them.

ArrayList names = new ArrayList();
names.add("Bob");
names.add("Sue");
names.add("Jeremiah");

• We can pick out elements at particular index positions.
String someNames = names.get(0) + " and " + names.get(1);

• But how can we do something for all names?
• Print out all names in the list.
• Find the first name, alphabetically.
• Find what the longest name.
• See if a given name is in the list.

5/11/2003 (c) 2001-3, University of Washington M-4

Iterating The Old-Fashioned Way

• Using what we already know about ArrayLists, we can
iterate as follows:

for (int rnum = 0; rnum < myList.size(); rnum++) {
ElementType oneItem = myList.get(rnum);
// process this item
...

}

CSE142 Wi03 M-2

5/11/2003 (c) 2001-3, University of Washington M-5

Iterating More Elegantly
• Abstractly, what we really want is to be able to write:

For all elements in the list,

Do something.

• To get "all elements in the list", we can use an iterator
• An iterator is an object that stands as a intermediary between us

and the data structure
• It knows how many items there are in the structure
• It keeps track of which ones it has passed out

• Strategy:
• Ask the array list for its iterator object.
• Ask the iterator object for each element, in turn, as part of a while loop.

• We don't have to know how many elements are in the list!

5/11/2003 (c) 2001-3, University of Washington M-6

Iterator Operations
• Getting an iterator object from an ArrayList (and many

other kinds of Java collections):
Iterator iter = names.iterator();

• Here are the methods provided by Iterator:

// Return true if the iteration has more elements.
public boolean hasNext();

// Return the next element in the iteration.
public Object next();

5/11/2003 (c) 2001-3, University of Washington M-7

Using an Iterator, in English
• General algorithm:

Get the iterator for the collection [names.iterator()].
While the iterator has at least one more element [iter.hasNext()],

Get the next element [iter.next()].
Do something using the element.
Then go back to the top.

Otherwise, we're done.

• This is a very common and very important pattern in
programming

5/11/2003 (c) 2001-3, University of Washington M-8

Using an Iterator, in Java
ArrayList names = …;

System.out.println("The names are as follows:");

Iterator iter = names.iterator(); // get the iterator for the collection.

while (iter.hasNext()) { // while there is another element…
String name = (String) iter.next(); // get the element (and cast it if needed)
System.out.println(name); // do something using the element.

} // then go back to the top.

// Otherwise, we're done.

CSE142 Wi03 M-3

5/11/2003 (c) 2001-3, University of Washington M-9

Relationships Between Objects

5/11/2003 (c) 2001-3, University of Washington M-10

Another Example: Finding the Longest Name
• Suppose we want to find the longest name in a list. How

would we do it?
• Recall: "Bob".length() == 3

• What's the algorithm in English?
• What's the Java code?

5/11/2003 (c) 2001-3, University of Washington M-11

Solution

5/11/2003 (c) 2001-3, University of Washington M-12

Iterators vs Indexed Access
• We can also process an ArrayList using get(index)

for (int k = 0; k < names.size(); k++) {

process names.get(k);

}

• Tradeoffs
• Iterators are more general – work on all collections, even if the collection

doesn’t support indexed access (i.e., using get(k) to access elements
directly)

• Iterators only support traversal of a collection from beginning to end – if we
want to go backwards or in some other order, we need indexed access (and
a container that supports it)

• General rule: use iterators (the more general solution) normally;
use other traversals when iterators don’t do what you need

