
CSE142 Wi03 O-1

5/11/2003 (c) 2001-3, University of Washington O-1

CSE 142

Searching

5/11/2003 (c) 2001-3, University of Washington O-2

Outline for Today
• Review – sequential (linear) search of a list
• Binary search
• Comparing algorithms

5/11/2003 (c) 2001-3, University of Washington O-3

Searching
• Many information processing applications involve searching for

something
• Sometimes the search must be wide

• Example: finding the best airfare for a trip to New York
• What exactly gets searched is vague
• Where do you even start?
• When you get an answer, is it even right?

• A more narrow but very common use of searching: looking for
something specific in a single collection

• We know where to look
• We know what the answer looks like

5/11/2003 (c) 2001-3, University of Washington O-4

Searching a List
• For this lecture, assume that we’ve got a list, and some

collection of strings has been added to the list
ArrayList names = new ArrayList();

names.add(“frog”);

names.add(“rabbit”);
names.add(“aardvark”);

• Problem: Look for a particular name in the list

• Clearly, this is a narrowly defined search

CSE142 Wi03 O-2

5/11/2003 (c) 2001-3, University of Washington O-5

Searching a List
• Problem: Look for a particular name in a list of strings
• Still have to define some details
• What form should the result be?
• One common choice: report a boolean to say if the item is

found
• Another very common choice:

• If found, report the position of the item sought
• If not found, report something to indicate “not found”

• As almost always in programming specifications, “report”
means “return a value”, not “print something”.

5/11/2003 (c) 2001-3, University of Washington O-6

Linear Search
• Locate a string in the list

/* Assume the list to be searched is an instance variable called names */
/** Return position of str in the list, or –1 if not present */

public int find(String str) {

/* Walk the list and compare each item to the parameter */

}

5/11/2003 (c) 2001-3, University of Washington O-7

Can we do better?
• How much work does linear search do?
• Can we do it faster?

• No, if we don’t know anything about the order of elements in
the list

• Yes, if the list is in order

5/11/2003 (c) 2001-3, University of Washington O-8

Binary Search – Informal
• Idea

• Look in the middle of the list
• If we haven’t found what we’re looking for, we can ignore half

of the list and look at the other half

• The list must be in order (sorted) for this to work
• Such a requirement is an example of a precondition

• A precondition allows the programmer to make an assumption
• We’ll assume names.get(0) <= names.get(1) <= … <=

names.get(names.size()-1)

CSE142 Wi03 O-3

5/11/2003 (c) 2001-3, University of Washington O-9

Binary Search – Goal
• Recall: the return value is a position
• Goal (more formally)

• Want to find the position of the list such that everything to the
left is <= the string we’re searching for and everything to the
right is >

• Such a position always exists, even if the value sought is not in
the list!

• Picture:

5/11/2003 (c) 2001-3, University of Washington O-10

Binary Search – Strategy
• On a typical iteration, we have

• Idea:
• Let mid = (L+R)/2
• If names.get(mid) <= str, move the L index (in which direction?)
• If names.get(mid) > str, move the R index

(Note: In the book, Nino & Hosch use a slightly different invariant. For them,
names.get(low) to names.get(high) is the unexamined region. In these slides,
the unexamined region is names.get(L+1) to names.get(R-1). Either can be
made to work correctly.)

0 L R size()

names <= str ? > str

5/11/2003 (c) 2001-3, University of Washington O-11

Detail: String Comparisons
• We need to compare Strings to determine ordering, not just

equality
• Can’t use <, <=, etc. on objects
• Solution: method compareTo in class String

s.compareTo(t)

returns
negative integer if s comes before t
zero if s and t have identical values
positive integer if s comes after t

For Strings, “before” and “after” are determined by the values of
the Unicode character set
As a first approximation, think “case-sensitive alphabetical order”

5/11/2003 (c) 2001-3, University of Washington O-12

compareTo Footnote
• s.compareTo(t) in class String returns

negative integer if s comes before t
zero if s and t have identical values
positive integer if s comes after t

• Many Java classes define a compareTo method with this
kind of return value scheme

• An example of a common programming convention
• Not enforceable, except as a social contract

CSE142 Wi03 O-4

5/11/2003 (c) 2001-3, University of Washington O-13

Binary Search – Code
/** Return location of str in the list, or –1 if not present */

public int find(String str) {

while (______________________________) {

}

}

5/11/2003 (c) 2001-3, University of Washington O-14

Binary Search – Test
• Invent some data, try the algorithm

5/11/2003 (c) 2001-3, University of Washington O-15

Binary Search – Test

5/11/2003 (c) 2001-3, University of Washington O-16

Binary Search – Performance
• Is the extra complexity worth it?
• How much work is done to search a list of a given size?
• or, How big a list can be searched with n comparisons?

CSE142 Wi03 O-5

5/11/2003 (c) 2001-3, University of Washington O-17

Binary & Linear Search Compared
• Linear search: work ~ size
• Binary search: work ~ log2 size

• This is a fundamental difference – not just a constant speedup
• But it requires a sorted list

• Graph:

