
CSE142 Wi03 R-1

1/10/2003 (c) 2001-3, University of Washington R-1

CSE 142

2-D Arrays

1/10/2003 (c) 2001-3, University of Washington R-2

Review – One-Dimensional Arrays
• Simple, ordered collections.

• Elements of a particular array all have the same type.
• Size fixed when array created.

Person[] people = new Person[4];

• Indexed access to elements.
people[3] = new Person();

people[3].moveBy(10, 20);

1/10/2003 (c) 2001-3, University of Washington R-3

1-D vs. 2-D Arrays
• One-dimensional arrays are very common in

programming
• That's all we used at first

• In everyday life, an array is an regular arrangement,
usually rectangular
• In programming terms, these are two-dimensional arrays

1/10/2003 (c) 2001-3, University of Washington R-4

The Game of Life

• Originated by John Conway
• Many interesting variations
• Played on a 2-D board
• Each cell is "alive" or "dead"
• At each time step, a cell looks at its neighbors and may

change its own state as a result

CSE142 Wi03 R-2

1/10/2003 (c) 2001-3, University of Washington R-5

Game of Life: Rules
• You can make up your own rules!
• Typical rules:

• 1. If a cell is surrounded by too many live cells, it dies
• 2. If a dead cell is surrounded by enough dead cells, it comes

to life

• I.e., given a particular cell,
• let liveNeighborCount = number of adjacent cells which are

alive
• If liveNeighborCount > 7, it dies
• If liveNeighborCount < 4, it comes to life
• Otherwise, it doesn’t change

1/10/2003 (c) 2001-3, University of Washington R-6

Implementing The Game of Life
• 2-D arrays are a natural data structure for the game “board”
• int[] [] board;

• Each array elements represents a cell on the board
• Could use boolean[] [] instead as long as there are only two cell states

/** Construct a board with all cells "dead".*/

public GameOfLife() {

board = new int[ROWS][COLS];

for (int r = 0; r < ROWS; r++) {

for (int c = 0; c < COLS; c++) {

board[r][c] = DEAD;

}

}

}

1/10/2003 (c) 2001-3, University of Washington R-7

2-D Arrays
• Suppose we want to represent a picture
• Want a rectangular, 2-dimensional matrix of Pixel objects

• Each Pixel contains a red, green, and blue color component

• We can create an array with 2 dimensions to hold the picture
• Type pattern: <elem type>[][]

• New expr pattern: new <elem type>[<dim 1 size>][<dim 2 size>]
• Access expr/assignment pattern: <array>[<dim 1 index>][<dim 2 index>]

Pixel[][] picture = new Pixel [40] [60];

picture[0][0] = new Pixel(128, 0, 255); // parameters are red, green, blue intensities

1/10/2003 (c) 2001-3, University of Washington R-8

Picture

CSE142 Wi03 R-3

1/10/2003 (c) 2001-3, University of Washington R-9

2-D Array = Array of Arrays
• A 2-D array is really just an array of arrays

(In languages like FORTRAN and C/C++, this isn't true)

• It's possible to manipulate each row array separately
Pixel[][] picture = new Pixel[40][60];
picture[0][0] = new Pixel(0, 0, 255);
…
Pixel[] firstRow = picture[0];

firstRow[0] = new Pixel(255, 0, 0);

• What do the following evaluate to?
picture.length

firstRow.length
picture[0][0].length

1/10/2003 (c) 2001-3, University of Washington R-10

2-D Array Traversal
• Typical traversal is to go through the rows and, for each

row, go through the columns. Called "row-major order"
/** Create new picture pixels with given rgb color */
public void initialize(Pixel[][] picture, int r, int g, int b) {

for (int row = 0; row < picture.length; row++) {
for (int col = 0; col < picture[row].length; col++) {

picture[row][col] = new Pixel(r, g, b);
}

}
}

• Notice how the upper bounds of the two loops are computed

• “Column-major” order is also possible – go through the
columns and, for each column, go through the rows

1/10/2003 (c) 2001-3, University of Washington R-11

Exercise: Shift Picture to Left
// Copy colors one cell to the left, setting last column to white
public void shiftLeft(Pixel[][] picture) {

for (int row = 0; row < ___________________________ ; row++) {

for (int col = 0; col < ___________________________ ; col++) {

picture[row][col] = _______________________________________ ;

}

}
}

1/10/2003 (c) 2001-3, University of Washington R-12

Exercise: Shift Picture Down
// Copy colors one cell downwards, setting first row to white

public void shiftDown(Pixel[][] picture) {

}

• Hint: row-major order might not be the right approach.

CSE142 Wi03 R-4

1/10/2003 (c) 2001-3, University of Washington R-13

Summary

• 2-D arrays
• In Java, just an array of arrays

(Similar concepts in other languages)

• Syntax is extension of 1-D array case
type[][] name = new type[nRows][nCols]
name[r][c]

