
CSE142 Wi03 T-1

6/9/2003 (c) 2001-3, University of Washington T-1

CSE 142

Relationships Between Classes
Introduction to Inheritance

6/9/2003 (c) 2001-3, University of Washington T-2

A Design Exercise

• Suppose we are asked to design a set of classes to
represent the items in a library’s collection
• Books
• Magazines/journals
• CDs
• Videos/DVDs
• Etc.

• Ignoring overlap between classes, what object
properties and responsibilities would be needed/
appropriate for this?

6/9/2003 (c) 2001-3, University of Washington T-3

Your Design Here

6/9/2003 (c) 2001-3, University of Washington T-4

Critique

• What do these classes (objects) have in common?
• How do they differ?
• How do we capture the common parts of the design?

• Want to describe/define these once, not repeatedly in every
class

• How do we relate the specific classes to the common
parts of the design?

CSE142 Wi03 T-2

6/9/2003 (c) 2001-3, University of Washington T-5

Notes

6/9/2003 (c) 2001-3, University of Washington T-6

Relationships Between Classes

• We are long familiar with objects that contain references
to objects of the same or other classes
• “Contains” or “has-a” relationship
• Example: a car “has-a” engine, 4 tires, steering wheel, etc.
• In this case, the relationship is one object being a component

of another object

• For the library collection, we’d like to capture a different
notion
• that a book or journal “is-a” specialized kind of item in the

collection
• New kind of relationship between classes, not “has-a”

6/9/2003 (c) 2001-3, University of Washington T-7

Interfaces: Not Quite Enough

• Methods common to two classes can be captured in a
Java interface
• Example: Comparable: classes which have a compareTo

method

• “is-a” is a much stronger relationship than just “has
something in common”
• Strings and BankAccounts are both Comparable, but…

A String is not a type of BankAccount
A BankAccount is not a type of String

6/9/2003 (c) 2001-3, University of Washington T-8

Key Ideas of Inheritance

• A class can be defined as an extension of an existing
class
• Java Syntax

class Book extends LibraryItem { … }

• Key idea:
1. The extended class inherits all of the properties,

capabilities, and responsibilities of the original class
2. The extended class can add additional properties,

capabilities and responsibilities

CSE142 Wi03 T-3

6/9/2003 (c) 2001-3, University of Washington T-9

More About Inheritance

• Objects in the extended class have all of the state and
methods of the original class
• Allows us to factor properties/responsibilities common to

several classes into a single class that can be extended

• Extended classes can define additional properties and
responsibilities that are appropriate for it

• Extended classes can also redefine behavior which was
already defined in the original class

6/9/2003 (c) 2001-3, University of Washington T-10

Inheritance: Java Syntax
public class MyClass extends OldClass {

// add instance variables
// add new methods, if desired
// redefine (override) old methods, if desired

}

6/9/2003 (c) 2001-3, University of Washington T-11

Some Technical Terminology

• A base class (or superclass) defines properties/
responsibilities shared by a set of related classes

• A derived class (or subclass) extends a base class
• Inherits all of the properties/responsibilities of the base class
• Can define additional properties/responsibilities

class A extends B {...
• Which class is which?

6/9/2003 (c) 2001-3, University of Washington T-12

Drawing Inheritance Relationships
• As usual, there is a conventional way to draw it

• Put the base class at the top
• Similar to the style for interface relationships

CSE142 Wi03 T-4

6/9/2003 (c) 2001-3, University of Washington T-13

Library Classes Revisited

• Re-work your design for the library collection classes to
use inheritance
• Define a single base class LibraryItem with properties and

responsibilities common to Books, Journals, CDs, etc.
• Define extended classes for each of the different kinds of

collection items with additional properties/responsibilities
appropriate for those classes but not for all LibraryItems in
general

6/9/2003 (c) 2001-3, University of Washington T-14

Design Using Inheritance

6/9/2003 (c) 2001-3, University of Washington T-15

Inheritance in Java’s GUI Libraries
• Modern applications usually have a Graphical User

Interface (GUI)
• Windows, buttons, menus, icons, labels, text entry

areas, pull-down lists, sliders, spinners, etc. etc.
• Java has two main packages for GUI support

• AWT (older)
• Swing (newer)

• Inheritance and interfaces are keys to understanding
and using GUI libraries

6/9/2003 (c) 2001-3, University of Washington T-16

Example: A GUI for The Game Of Life
• Goal: A rectangular board, with cells colored according

to status, set in a window with a dark background
• Board should be updated automatically as the game operates

• Stretch goal: be able to change cells by clicking on them

CSE142 Wi03 T-5

6/9/2003 (c) 2001-3, University of Washington T-17

Basic Components for the GUI: JFrame
• Need a Window: has a title bar, min/max buttons,

borders, and can contain other components
• Swing class JFrame provides exactly this

• Look at Javadoc to find constructor and methods
• Constructor lets you put a title in the top border
• Problem: Javadoc shows no method for setting the

background color
• Solution: look in the class which JFrame inherits from!

• One of those classes has a setBackground method
• Dozens or hundreds of methods are available!

6/9/2003 (c) 2001-3, University of Washington T-18

6/9/2003 (c) 2001-3, University of Washington T-19

Basic Components for the GUI: JPanel
• The game board should be drawn on a subcomponent of

the frame
• Will not have its own title bar, etc.
• Will consist of a number of lines and/or rectangles

• Swing component JPanel is suitable
• A borderless area which can hold other components, or can be

drawn on directly
• Inherits many methods from the classes above it

6/9/2003 (c) 2001-3, University of Washington T-20

CSE142 Wi03 T-6

6/9/2003 (c) 2001-3, University of Washington T-21 6/9/2003 (c) 2001-3, University of Washington T-22

Problem: Drawing the Game Board
• Drawing or “painting” is done when the system needs to

refresh the screen
• The repaintComponent method gets called in this case
• All components inherit a repaintComponent method
• Unfortunately, that method doesn’t draw a game board

(surprise!)
• We have to override the method, i.e., supply our own

version
• This requires creating a new class which inherits from JPanel

6/9/2003 (c) 2001-3, University of Washington T-23 6/9/2003 (c) 2001-3, University of Washington T-24

Events in the GUI
• “Events” are things which happen, often unpredictably,

often as a result of user input
• mouse clicks, menu pull-downs, key pressed, etc.

• Swing responds to events by calling methods with pre-
defined signatures (if there are such methods around):
• Example: on a mouse click, the system will call

public void mouseClicked(MouseEvent e);

CSE142 Wi03 T-7

6/9/2003 (c) 2001-3, University of Washington T-25

Events and Interfaces
• Two objects are involved in event processing

• One object “generates” the event
• Another object “handles” the event
• It is allowable for one object to play both roles

• If you want your object to “handle” an event, you
implement the appropriate method
• the methods are defined in interfaces

Thus, interfaces are heavily used in GUI programming

• There are dozens of defined interfaces

• Example: mouseClick is one of several event methods
defined in the MouseListener interface

public class MyObject implements MouseListener {...

6/9/2003 (c) 2001-3, University of Washington T-26

Inheritance (extends) vs Interface (implements)

• Interface: A implements B: A must implement every
method defined by B

• Inheritance: A extends B: A may reimplement any
method defined by B

• In both cases, you are free to add additional methods
and instance variables

• implements can be thought of as a special kind of
extends

6/9/2003 (c) 2001-3, University of Washington T-27

Summary
• Inheritance is a key concept of object-oriented

programming
• Inheritance models the “is-a” relationship
• Java keyword: extends
• Inheritance is heavily used in system modeling and

design
• E.g., library collection

• Inheritance is heavily used in standard library design
• E.g. GUI libraries

• Want to learn more? Stick around and take CSE143!

