CSE 142

Classes and Objects in Java

Outline for Today

4/5/2004 (c) 2001-4, University of Washington E-1

* Review of objects and classes

» Husky Card analysis and class design
+ Class definitions in Java

*Rules and conventions

» Specifications and Implementations

+ Commenting

» Specifying methods in Java

* Where do objects come from?

4/5/2004 (c) 2001-4, University of Washington E-2

Objects Reviewed

* Objects have properties and responsibilities
* Properties

« Sets of values

« Have a specific type (simple or reference to an object type)

« The current collection of property values is the object’s state
* Responsibilities

« The collection of messages the object understands - what it

can do
* Queries and commands

Classes Reviewed

4/5/2004 (€) 2001-4, University of Washington E3

+ A pattern for a collection of similar objects is called a
class
« All objects in the class have the same properties and
responsibilities
« Every object is an instance of some class
* The basic unit of programming in Java is a class
definition
« Specifies properties and responsibilities of instances
« Individual objects are created as needed
+ Each class defines a new type
« Object properties can be references to other objects

4/5/2004 (¢) 2001-4, University of Washington E4

CSE142

Exercise

* Design a class to represent a
simple Husky Card account
+ What are the properties?
+ What are the responsibilities?

Commands? F - 1
Queries =¥]
wallli— =

Husky Card Account Design

4/5/2004 (c) 2001-4, University of Washington E-5

* Properties

+ Responsibilities (commands/queries)

4/5/2004 (c) 2001-4, University of Washington E-6

Translating This to Java

+ Class definition
[** Representation of a simple Husky Card */
public class HuskyCard {

}
+ Defines a class and gives it a name

* Between the braces { ... } we give details of
« Instance variables: the properties of the object
» Methods: sequences of Java code that carry out the object’s
responsibilities (commands and queries)

(In other programming languages these are sometimes called functions,
procedures, or subroutines)

What Do We Have So Far?

4/5/2004 (c) 2001-4, University of Washington E7

+ When we finish translating our analysis to Java code...

+ Did we have an object?
+ Did we have a program?

4/5/2004 (¢) 2001-4, University of Washington E8

CSE142

E-2

Rules and More Rules

+In the class definition
public class HuskyCard { ... }
« There are some things we have freedom to choose
« There are some things we have no choice in
« This is a basic characteristic of programming
« Example: In a class definition like this, we must use
curly braces { }
» We can't choose to use [] or () instead
+ Example: we can't change the word order from class
HuskyCard to HuskyCard class

* These are said to be rules of syntax or form

Identifiers — Names of Things

4/5/2004 (c) 2001-4, University of Washington E-9

+In the class definition
public class HuskyCard { ... }

HuskyCard is the name of the class

+ We do have a choice about how we name the class -
within limits

*Names in Java are called identifiers

+ We'll see many uses for identifiers in programs

4/5/2004 (c) 2001-4, University of Washington E-10

Not Just Any Name...

+ Programming languages all have rules about what
constitutes a legal identifier (name)
+In Java (and C, C++, etc.):

« Combination of letters, digits, underscores (_) starting with a
letter ($ is also allowed, but best to avoid)

» Must start with a letter
« Case sensitive (abc, Abc, ABC are all different)
« Details in the book
* May not be a keyword or reserved word that has a

special meaning in Java
class, public, if, for, int, double, boolean, ...

Not Just Any Legal Name, Either

4/5/2004 (c) 2001-4, University of Washington E-1

* Picking good names is an essential part of programming

+» General rule of thumb: for names that describe classes
(types), queries, and properties, use a noun phrase that
describes instances of the class or the property
accountNumber, totalSales, quantitylnStock, getBalance
« Avoid cryptic, cute, or vague names
“value” or “count” contains no useful information
« For methods, use a verb phrase that describes action
performed
setBalance, deposit, withdraw, changeDate

This advice is a convention, not a rule of Java

4/5/2004 (¢) 2001-4, University of Washington E12

CSE142

Naming Conventions

« A convention is a customary practice that falls just short of being
arule
« Example: when to capitalize identifiers
« Java has no syntax rule about when to choose a capital letter
« Java programmers almost universally follow this convention:
« Instance variables and methods: begin with lower case letter
« Class names: capitalized
« For now: A class named Foo should be in a file named Foo.java
« Later we'll explain exceptions to this convention
* Please follow these conventions in CSE142!

« Exerice: look at some Java code in the textbook and see if it follows these
conventions

Comments in a Program

4/5/2004 (c) 2001-4, University of Washington E13

« Comments help the human reader; otherwise ignored
« Essential to record information needed to understand the
program that is not reflected directly in the code (design

decisions, strategies, etc.)
* Two forms of Java comments
I the rest of the line following “//" is a comment

[* everything after “/*" is a comment until reaching this: */
[** special comment form for documentation (“doc comments”) */

4/5/2004 (c) 2001-4, University of Washington E14

Comments in CSE142

+ Good commenting is an art
* Need to include essential information, but don’t overdo it
+ Java has an set of conventions for commenting
« "JavaDoc"
«» Widely followed by professional programmers
+"Do | have to comment my program in CSE142?"
« Indirect answer #1: You should want to comment every
program you write, whether or not it's for 142
« Indirect answer #2: Your work in 142 should communicate well
to a human reader and show professionalism.

Specification vs Implementation

4/5/2004 (€) 2001-4, University of Washington E-15

+ Specification — view of the class as seen by client code
that uses instances of the class

« Often called the interface of the class (although the word
interface has a particular technical meaning in Java, which we
will get to eventually)

+ Implementation - internal details
« Client should not know anything about this

+ Some specifications in real life
« Automobile “user interface” — steering wheel, pedals, etc.
« Electric power outlet

4/5/2004 (¢) 2001-4, University of Washington E-16

CSE142

E-4

Specifying a HuskyCard

* Class: HuskyCard
* Queries
« getAccountBalance
« getAccountName
* getAccountNumber
« Commands
« setAccountName
« setAccountNumber
« deposit
« withdraw
« Special “command”: constructor — initialize new HuskyCard
instance when it is created

HuskyCard Specification in Java

4/5/2004 (c) 2001-4, University of Washington EA7

+In Java, the specification and implementation are given
in a single file

+ To create a class we start by writing the specification
parts of methods (i.e., the operations available to client
code)

+ After specifying, we'll fill in the implementation details
(next lecture)

4/5/2004 (c) 2001-4, University of Washington E-18

Specifying Methods for Queries

+ Example
[** return the current balance in this HuskyCard */
public double getBalance() { ... }

« “public” - defines this as part of the public specification

« “double” (or int, boolean, HuskyCard, etc.) — defines the type of
the value returned by this query

« “getBalance” - the name of the method; when a getBalance
message is sent to a HuskyCard object, this method will be
used to carry out that responsibility

Specifying Methods for Commands

4/5/2004 (€) 2001-4, University of Washington E-19

s Example
[** Transfer the given amount from otherAccount to this HuskyCard */
public void transfer(double amount, HuskyCard otherAccount){ ... }
« “public” — same as for a query; this is part of the specification

« “void” - special keyword to identify this as a command that
does not return a value

« “deposit” - the name of the method

« “double amount” and “HuskyCard otherAccount” - these are
parameters, pieces of information supplied when the object is
given this command

Like the 5 in a “clap 5" message sent to an Actor

4/5/2004 (¢) 2001-4, University of Washington £-20

CSE142

"Mommy, Where do Objects Come From?"

* Objects in a program have to be "born" somehow
« They may "die", too, when no longer needed

+ We say that the new object is "constructed"

+ Just like with people, object construction happens only
once per object

+ A class has the responsibility to create new objects of
its type

* The special methods used to initialize new objects are
called "constructors”

Constructors

4/5/2004 (c) 2001-4, University of Washington E-21

« Example
[** Construct a new HuskyCard with an initial balance of 0
* @param studentName the student's name
* @param IDNumber the student's ID Number */
public HuskyCard(String studentName, int IDNumber){ ... }

« Syntax: like a command, but no “void” keyword

« Every time a new HuskyCard instance is created, the
constructor is run

« Constructors are normally used to initialize the new object’s
state to some sensible value

4/5/2004 (c) 2001-4, University of Washington E22

Summary

+ Class Definitions are the unit of programming in Java
« Individual objects are created as instances of these classes

+ Program must follow certain rules and should follow
certain conventions

» Specification vs Implementation

« What is publicly available to client code vs what is private
information hidden inside the class

« Specifications for class methods
* Queries
+ Commands
« Constructors — a specialized kind of command

4/5/2004 (€) 2001-4, University of Washington E23

CSE142

E-6

