
CSE142 E-1

4/5/2004 (c) 2001-4, University of Washington E-1

CSE 142

Classes and Objects in Java

4/5/2004 (c) 2001-4, University of Washington E-2

Outline for Today
• Review of objects and classes
• Husky Card analysis and class design
• Class definitions in Java
• Rules and conventions
• Specifications and Implementations
• Commenting
• Specifying methods in Java
• Where do objects come from?

4/5/2004 (c) 2001-4, University of Washington E-3

Objects Reviewed
• Objects have properties and responsibilities
• Properties

• Sets of values
• Have a specific type (simple or reference to an object type)
• The current collection of property values is the object’s state

• Responsibilities
• The collection of messages the object understands – what it

can do
• Queries and commands

4/5/2004 (c) 2001-4, University of Washington E-4

Classes Reviewed
• A pattern for a collection of similar objects is called a

class
• All objects in the class have the same properties and

responsibilities

• Every object is an instance of some class
• The basic unit of programming in Java is a class

definition
• Specifies properties and responsibilities of instances
• Individual objects are created as needed

• Each class defines a new type
• Object properties can be references to other objects

CSE142 E-2

4/5/2004 (c) 2001-4, University of Washington E-5

Exercise

• Design a class to represent a
simple Husky Card account

• What are the properties?
• What are the responsibilities?

Commands?
Queries

4/5/2004 (c) 2001-4, University of Washington E-6

Husky Card Account Design

• Properties

• Responsibilities (commands/queries)

4/5/2004 (c) 2001-4, University of Washington E-7

Translating This to Java

• Class definition
/** Representation of a simple Husky Card */
public class HuskyCard {

…
}

• Defines a class and gives it a name
• Between the braces { … } we give details of

• Instance variables: the properties of the object
• Methods: sequences of Java code that carry out the object’s

responsibilities (commands and queries)
(In other programming languages these are sometimes called functions,
procedures, or subroutines)

4/5/2004 (c) 2001-4, University of Washington E-8

What Do We Have So Far?

• When we finish translating our analysis to Java code...

• Did we have an object?
• Did we have a program?

CSE142 E-3

4/5/2004 (c) 2001-4, University of Washington E-9

Rules and More Rules

• In the class definition
public class HuskyCard { … }

• There are some things we have freedom to choose
• There are some things we have no choice in
• This is a basic characteristic of programming

• Example: In a class definition like this, we must use
curly braces { }
• We can't choose to use [] or () instead

• Example: we can't change the word order from class
HuskyCard to HuskyCard class

• These are said to be rules of syntax or form

4/5/2004 (c) 2001-4, University of Washington E-10

Identifiers – Names of Things

• In the class definition
public class HuskyCard { … }

HuskyCard is the name of the class
• We do have a choice about how we name the class –

within limits
• Names in Java are called identifiers
• We'll see many uses for identifiers in programs

4/5/2004 (c) 2001-4, University of Washington E-11

Not Just Any Name...

• Programming languages all have rules about what
constitutes a legal identifier (name)

• In Java (and C, C++, etc.):
• Combination of letters, digits, underscores (_) starting with a

letter ($ is also allowed, but best to avoid)
• Must start with a letter
• Case sensitive (abc, Abc, ABC are all different)
• Details in the book

• May not be a keyword or reserved word that has a
special meaning in Java

class, public, if, for, int, double, boolean, …

4/5/2004 (c) 2001-4, University of Washington E-12

Not Just Any Legal Name, Either

• Picking good names is an essential part of programming
• General rule of thumb: for names that describe classes

(types), queries, and properties, use a noun phrase that
describes instances of the class or the property

accountNumber, totalSales, quantityInStock, getBalance

• Avoid cryptic, cute, or vague names
“value” or “count” contains no useful information

• For methods, use a verb phrase that describes action
performed

setBalance, deposit, withdraw, changeDate

This advice is a convention, not a rule of Java

CSE142 E-4

4/5/2004 (c) 2001-4, University of Washington E-13

Naming Conventions

• A convention is a customary practice that falls just short of being
a rule

• Example: when to capitalize identifiers
• Java has no syntax rule about when to choose a capital letter
• Java programmers almost universally follow this convention:

• Instance variables and methods: begin with lower case letter
• Class names: capitalized

• For now: A class named Foo should be in a file named Foo.java
• Later we'll explain exceptions to this convention

• Please follow these conventions in CSE142!
• Exerice: look at some Java code in the textbook and see if it follows these

conventions

4/5/2004 (c) 2001-4, University of Washington E-14

Comments in a Program

• Comments help the human reader; otherwise ignored
• Essential to record information needed to understand the

program that is not reflected directly in the code (design
decisions, strategies, etc.)

• Two forms of Java comments
// the rest of the line following “//” is a comment
/* everything after “/*” is a comment until reaching this: */
/** special comment form for documentation (“doc comments”) */

4/5/2004 (c) 2001-4, University of Washington E-15

Comments in CSE142

• Good commenting is an art
• Need to include essential information, but don’t overdo it

• Java has an set of conventions for commenting
• "JavaDoc"
• Widely followed by professional programmers

• "Do I have to comment my program in CSE142?"
• Indirect answer #1: You should want to comment every

program you write, whether or not it's for 142
• Indirect answer #2: Your work in 142 should communicate well

to a human reader and show professionalism.

4/5/2004 (c) 2001-4, University of Washington E-16

Specification vs Implementation

• Specification – view of the class as seen by client code
that uses instances of the class
• Often called the interface of the class (although the word

interface has a particular technical meaning in Java, which we
will get to eventually)

• Implementation – internal details
• Client should not know anything about this

• Some specifications in real life
• Automobile “user interface” – steering wheel, pedals, etc.
• Electric power outlet

CSE142 E-5

4/5/2004 (c) 2001-4, University of Washington E-17

Specifying a HuskyCard

• Class: HuskyCard
• Queries

• getAccountBalance
• getAccountName
• getAccountNumber

• Commands
• setAccountName
• setAccountNumber
• deposit
• withdraw

• Special “command”: constructor – initialize new HuskyCard
instance when it is created

4/5/2004 (c) 2001-4, University of Washington E-18

HuskyCard Specification in Java

• In Java, the specification and implementation are given
in a single file

• To create a class we start by writing the specification
parts of methods (i.e., the operations available to client
code)

• After specifying, we’ll fill in the implementation details
(next lecture)

4/5/2004 (c) 2001-4, University of Washington E-19

Specifying Methods for Queries

• Example
/** return the current balance in this HuskyCard */
public double getBalance() { … }

• “public” – defines this as part of the public specification
• “double” (or int, boolean, HuskyCard, etc.) – defines the type of

the value returned by this query
• “getBalance” – the name of the method; when a getBalance

message is sent to a HuskyCard object, this method will be
used to carry out that responsibility

4/5/2004 (c) 2001-4, University of Washington E-20

Specifying Methods for Commands

• Example
/** Transfer the given amount from otherAccount to this HuskyCard */

public void transfer(double amount, HuskyCard otherAccount) { … }

• “public” – same as for a query; this is part of the specification
• “void” – special keyword to identify this as a command that

does not return a value
• “deposit” – the name of the method
• “double amount” and “HuskyCard otherAccount” – these are

parameters, pieces of information supplied when the object is
given this command

Like the 5 in a “clap 5” message sent to an Actor

CSE142 E-6

4/5/2004 (c) 2001-4, University of Washington E-21

"Mommy, Where do Objects Come From?"
• Objects in a program have to be "born" somehow

• They may "die", too, when no longer needed

• We say that the new object is "constructed"
• Just like with people, object construction happens only

once per object
• A class has the responsibility to create new objects of

its type
• The special methods used to initialize new objects are

called "constructors"

4/5/2004 (c) 2001-4, University of Washington E-22

Constructors

• Example
/** Construct a new HuskyCard with an initial balance of 0

* @param studentName the student’s name
* @param IDNumber the student’s ID Number */
public HuskyCard(String studentName, int IDNumber) { … }

• Syntax: like a command, but no “void” keyword
• Every time a new HuskyCard instance is created, the

constructor is run
• Constructors are normally used to initialize the new object’s

state to some sensible value

4/5/2004 (c) 2001-4, University of Washington E-23

Summary

• Class Definitions are the unit of programming in Java
• Individual objects are created as instances of these classes

• Program must follow certain rules and should follow
certain conventions

• Specification vs Implementation
• What is publicly available to client code vs what is private

information hidden inside the class

• Specifications for class methods
• Queries
• Commands
• Constructors – a specialized kind of command

