
CSE142 Wi04 F-1

1/16/2004 (c) 2001-4, University of Washington F-1

CSE 142

Class Implementation in Java

1/16/2004 (c) 2001-4, University of Washington F-2

Outline for Today
• Implementing classes in Java
• Instance variables – properties
• Value-returning methods for queries
• Void methods for commands
• Return statement
• Assignment statement and arithmetic expressions
• Method parameters
• Constructors

1/16/2004 (c) 2001-4, University of Washington F-3

Specification vs Implementation - Review
• Specification – external view of an object/class

• View of the class as seen by client code (i.e., other code that
creates or uses instances – objects – of this class)

• Class name and method names, parameters, and descriptions

• Implementation – internal details private to the class
• Instance variables – properties
• Methods – collections of statements (code) that define how an

object carries out its responsibilities (queries and commands)

1/16/2004 (c) 2001-4, University of Washington F-4

Instance Variables

• Example in class HuskyCard
private String name; // student name

private int ID; // student ID number

private int balance; // current balance in pennies

• These are instance variable declarations
private <type> <identifier>

• private – part of the implementation, not visible outside
• <type> - the type of the variable
• <identifier> - a (hopefully meaningful) name for the variable

• Each object of class HuskyCard will have its own set of
instance variables

CSE142 Wi04 F-2

1/16/2004 (c) 2001-4, University of Washington F-5

Constructors

• Whenever an object (instance of a class) is created, a
constructor is executed
• Idea: The constructor implementation should initialize the state

of the object to some appropriate value(s)

• Like a command but named the same as the class
• Specification for HuskyCard

/** Construct a new HuskyCard with an initial balance of 0
* @param studentName the student’s name
* @param IDNumber the student’s ID Number */
public HuskyCard(String studentName, int IDNumber) { … }

• This constructor has two parameters – studentName and
IDNumber

1/16/2004 (c) 2001-4, University of Washington F-6

Constructor Implementation

• Idea: use parameter values as initial values for new
object’s state

/** Construct a new HuskyCard with an initial balance of 0

* @param studentName the student’s name
* @param IDNumber the student’s ID Number */

public HuskyCard(String studentName, int IDNumber) {

name = studentName;

ID = IDnumber;
balance = 0;

}

1/16/2004 (c) 2001-4, University of Washington F-7

Assignment Statement

• First example of a statement
• Syntax

variable = expression ;

• Meaning
• First, evaluate the expression (formula) to get a value
• Second, bind that value to the variable whose name appears on

the left
• These two steps are done in that order, not simultaneously
• Question: what does this mean (or do)?

count = count + 1;

1/16/2004 (c) 2001-4, University of Washington F-8

Arithmetic Expressions

• Basic components
• Literals – 17, 3.0, 1.023e23
• Variable names – value is the current value of the variable

• Operators (see book for all the details)
• +, -, *, /, % (remainder)

Gotchas: for ints, x/y yields integer part, dropping any fraction; x%y gives the remainder

• Operators have the usual precedence
For example, a + b * c is understood to mean a + (b * c)

• Binary operators (ones that have two components) are left associative :
a * b / c means (a * b) / c

Use parentheses where needed to override or clarify: a * (b / c)

• Mixing ints and doubles is normally ok – the int is converted to a double and
the calculation is done as a double

CSE142 Wi04 F-3

1/16/2004 (c) 2001-4, University of Washington F-9

Implementing Methods for Simple Queries

• Example in class HuskyCard
/** return the name associated with this HuskyCard

* @return this HuskyCard owner’s name */

public String getName() {

return name;
}

• When this method is executed, it replies with the value
of the instance variable name

1/16/2004 (c) 2001-4, University of Washington F-10

Test

• Let’s try it out!
• Step 1: click the “compile” button to translate the code

from text to something the Java machine can execute
• Step 2: enter commands in DrJava’s interactions

window to create an object and call one of its methods

HuskyCard card = new HuskyCard(“E. Fudd”, 1020304);

card.getName()

1/16/2004 (c) 2001-4, University of Washington F-11

More About Value-Returning (Query) Methods

• Form
/** Comment specifying the method */

public <result type> <identifier> () {
list of statements

}

• Details
• public – this method is part of the public specification of the class (methods

can also be private; we’ll see examples eventually)
• <result type> – the type of the value returned by this query
• <identifier> – the (hopefully meaningful) name of this method

This is the name of the query that the method implements

• list of statements – the body of the method
These make up the algorithm that the method executes when it is called

1/16/2004 (c) 2001-4, University of Washington F-12

Return Statement

• Second example of a statement
return expression ;

• Meaning
• Evaluate the expression to get a value

In getName, the expression is just the name of the instance variable name

For a variable, evaluation means get its current value

• Then, finish execution of this method, replying with the value of
the expression

• A value-returning method must execute a return
statement to finish execution and specify the returned
value

CSE142 Wi04 F-4

1/16/2004 (c) 2001-4, University of Washington F-13

Exercise – Another Query

• Complete the query in class HuskyCard
/** Return the current balance in this HuskyCard

* @return the current balance in pennies. */

public int getBalance() {

}

1/16/2004 (c) 2001-4, University of Washington F-14

Implementing Methods for Simple Commands

• Example in class HuskyCard
/** Set this HuskyCard’s name to newName */

public void setName(String newName) {

name = newName;

}

• When this method is executed, it changes the name
instance variable; it does not return a value
• Executed only for its effect

• Try it out!

1/16/2004 (c) 2001-4, University of Washington F-15

More About Command Methods

• Form
/** Comment specifying the method */
public void <identifier> (parameters) {

list of statements
}

• Details
• public, <identifier>, and list of statements – same as for queries
• void – Indicates that this is a command that doesn’t return a

value (as opposed to the result type of a query)
(We can also have commands that return a result – in that case replace void with
the type of the result)

• parameters – information supplied with command message
(We can also have commands with no parameters if that makes sense)

1/16/2004 (c) 2001-4, University of Washington F-16

Exercise – Another Simple Command

• Complete the command in class HuskyCard
/** Set this HuskyCard’s balance to newBalance */

public void setBalance(int newBalance) {

}

CSE142 Wi04 F-5

1/16/2004 (c) 2001-4, University of Washington F-17

Deposit – Another Command

• In class HuskyCard
/** Deposit given amount in this HuskyCard */

public void deposit(double amount) {

balance = balance + amount;

}

• Meaning is clear since expression in assignment
statement is evaluated before balance is changed

1/16/2004 (c) 2001-4, University of Washington F-18

Transfer – Objects as Parameters

• From class HuskyCard
/** Transfer the given amount from otherCard to this HuskyCard */

public void transfer(int amount, HuskyCard otherCard) {

balance = balance + amount;

otherAccount.withdraw(amount);
}

1/16/2004 (c) 2001-4, University of Washington F-19

toString()

• Most classes should have a toString() function that
returns a string with whatever state information about
the object seems helpful
• Useful in debugging, other contexts

/** Return a string representation of this HuskyCard

* @return a string identifying this as a HuskyCard with name, id, balance */
public String toString() {

return “HuskyCard[name = “ + name + “, id = ” + id + “, balance = ” +

balance + “]”;

• + applied to strings returns a string that has copies of the
original strings pasted together

1/16/2004 (c) 2001-4, University of Washington F-20

Summary

• Implementation of classes
• Instance variables – type plus name
• Methods – statements that make up the body of each method

• Statements
• return
• Assignment & arithmetic expressions

• Creating objects and calling methods

• Coming attractions
• More details about objects, method calls, and variables
• More complex statements – conditionals and loops

