
CSE142 Wi04 J-1

2/3/2004 (c) 2001-4, University of Washington J-1

CSE 142

Declarations and Scope

2/3/2004 (c) 2001-4, University of Washington J-2

Outline for Today
• Goal: present more precisely several things we’ve dealt 

with informally up to now
• Only key topics at this time; won’t cover all the technical 

details

• Scope defined
• Scope for instance variables and methods

• Public and private
• Using local methods
• Accessing instance variables in other objects
• “this”

• Scope for method parameters and local variables

2/3/2004 (c) 2001-4, University of Washington J-3

Declarations

• Everything in a Java program is referenced using an 
identifier (name)

• New names must be declared
• Class declarations
• Method definitions and instance variable declarations in a class
• Parameter and local variable definitions in methods

2/3/2004 (c) 2001-4, University of Washington J-4

Scope

• The scope of a declaration is the region of the program 
where that declaration is in effect
• Classes: other classes in the program
• Methods and instance variables: the class containing the 

declaration and, possibly, other classes if they are public
• Parameters and local variables: part or all of the body of the 

method containing the declaration

• Scope limits the range of a declaration
• Allows sensible reuse of names (identifiers) in different parts of 

the code



CSE142 Wi04 J-2

2/3/2004 (c) 2001-4, University of Washington J-5

Methods and Instance Variables – Class Scope

• These are declared inside a class
• Scope depends on whether declared public or private

• Always accessible inside the class
• Accessible to clients outside the class if declared public
• Not accessible to clients if declared private

• Inside the class, local methods and instance variables 
can be referenced by their simple names

• Always use public or private in CSE142
• There are rules about what happens if you leave these off; we’ll

simplify our life by not dealing with them

2/3/2004 (c) 2001-4, University of Washington J-6

Example – HuskyCard Class
public class HuskyCard {

private int balance;   // card balance
private String name; // cardholder

/** Deposit money … */
public boolean deposit(int amount) {

balance = balance + amount;
}

/** Report current balance … */
public int getBalance ( ){

…
}

• Identifiers getBalance and 
deposit are visible inside and 
outside class HuskyCard

• Identifiers balance and name
are only visible inside the 
class

2/3/2004 (c) 2001-4, University of Washington J-7

Parameters – Method Scope

• The scope of a parameter declaration is the body of the method or 
constructor containing the parameter declaration

/** deposit amount in this HuskyCard */
public void deposit(double amount) {

…
}
/** Construct new HuskyCard … */
public HuskyCard(String ownerName, int idNumber) {

…
}

• When the method is called, each parameter is initialized by 
assigning it the corresponding argument value in the method call

HuskyCard card = new HuskyCard(“B. Moose”, 6834654);
card.deposit(4217);

2/3/2004 (c) 2001-4, University of Washington J-8

Example – HuskyCard Class
public class HuskyCard {

private int balance;   // card balance
private String name; // cardholder

/** Deposit money … */
public boolean deposit(int amount) {

balance = balance + amount;
}

/** Report current balance … */
public int getBalance ( ){

…
}

• Identifier amount is only  
visible inside the deposit 
method

• Identifier balance is visible to 
all methods in this class



CSE142 Wi04 J-3

2/3/2004 (c) 2001-4, University of Washington J-9

Local Variables

• Local variables can be declared inside a method
• Provides scratch space for temporary values and intermediate 

calculations
• Scope extends to the right brace “}” matching the nearest 

preceding left brace “{”
This can hide a instance variable, parameter, or local variable declared in a 
surrounding scope – generally bad style; don’t do it

• Variable no longer exists after leaving the scope
(in particular, parameters and local variables no longer exists after method 
execution ends)

2/3/2004 (c) 2001-4, University of Washington J-10

Example

• Suppose we’re programming a payroll system and want to 
calculate employee pay.

/** return the weekly pay of this Employee */
public double getWeeklyPay( ) {

double basePay;
double overtimePay;
if (hours <= 40) {

basePay = hours * rate; // hours, rate are instance variables
overtimePay = 0.0;

} else {
basePay = 40 * rate;
overtimePay = 1.5 * (hours-40) * rate;

}
return basePay + overtimePay;

}

2/3/2004 (c) 2001-4, University of Washington J-11

Trace
Employee intern = new Employee(…);
System.out.println(intern.getWeeklyPay());

2/3/2004 (c) 2001-4, University of Washington J-12

Variable Declaration with Initialization

• A variable declaration can also specify an initial value
/** Return the area of the circle with given diameter */

public double area(double diameter ) {

double radius = diameter / 2.0;

return 3.14 * radius * radius;
}

• Common for temporary quantities used inside a method
• Can make code easier to read if you name intermediate results 

by declaring and initializing appropriate local variables

• Less common for instance variables
• Usually better style to put all initializations in the constructor(s)



CSE142 Wi04 J-4

2/3/2004 (c) 2001-4, University of Washington J-13

Nested Scopes

• The scope of a parameter declared in a method is nested inside 
the class scope containing instance variables and methods 
belonging to the class

• The diagrams we use for a method call are designed to show this 
explicitly

(The book uses a slightly different diagramming convention, but it’s easy to move back 
and forth)

• If a name is referenced in a method, to find the actual thing the 
name refers to:
• First check the method scope
• Then, if you don’t find it, look at the surrounding class (object) scope
• If still not found, it is not declared – compiler will complain

2/3/2004 (c) 2001-4, University of Washington J-14

Nested Scopes Diagramed

• Example
HuskyCard card = new HuskyCard(“B. Moose”, 6834654);

card.deposit(4217);

2/3/2004 (c) 2001-4, University of Washington J-15

Nested Scope Pitfall

• Some (buggy) code
public class HuskyCard {

private String name; // cardholder’s name

/** Change the name on this card */

public void setName(String name) {
name = name;

}

}

• What happens if we execute this?
HuskyCard card = new HuskyCard(“B. Moose”, 6834654);

card.setName(“R. Squirrel”);

2/3/2004 (c) 2001-4, University of Washington J-16

Draw the Diagram

• Is there a way to…
Yes, there is a way to reference the instance variable even though the parameter has the same 
name; stay tuned…



CSE142 Wi04 J-5

2/3/2004 (c) 2001-4, University of Washington J-17

Scopes Revisited

• Another version of pay calculation.  What happens here?
/** return the weekly pay of this Employee */
public double getWeeklyPay( ) {

if (hours <= 40) {
double basePay = hours * rate;
double overtimePay = 0.0;

} else {
double basePay = 40 * rate;
double overtimePay = 1.5 * (hours-40) * rate;

}
return basePay + overtimePay;

}

• (Hint: what is the scope of a local variable declaration?)

2/3/2004 (c) 2001-4, University of Washington J-18

Another Scope Glitch

• Consider the following code
sum = 0;

for (int n = 1; n <= 100; n++) {

sum = sum + n;

}
System.out.println(“final value of sum is ” + sum + “ and final value of n is ” + n);

• This isn’t legal (and won’t compile).  Why not?

2/3/2004 (c) 2001-4, University of Washington J-19

Scopes and Multiple Objects

• Each object defines a separate scope for its instance 
variables and methods

• A method or instance variable in another object can be 
accessed if it is public or declared in the same class by 
writing

objectName . methodName ( … );

• or
objectName . instanceVariableName

• When a method executes, think of its local scope as 
being surrounded by the scope of the corresponding 
object

2/3/2004 (c) 2001-4, University of Washington J-20

Example: HuskyCard Transfer
class HuskyCard {

…

/** Transfer given amount from HuskyCard */

public void transferFrom(double amount, HuskyCard otherCard) {

boolean success = otherCard.withdraw(amount);
if (success) {

balance = balance + amount;

}

}



CSE142 Wi04 J-6

2/3/2004 (c) 2001-4, University of Washington J-21

Execution Example
HuskyCard yours = new HuskyCard (“Chris”, 567);
yours.deposit(5000);

HuskyCard mine = new HuskyCard(“Me”, 1234);

mine.transferFrom(yours, 2000);

2/3/2004 (c) 2001-4, University of Washington J-22

Another Implementation of Transfer
class HuskyCard{

…

/** Transfer given amount from otherCard */

public void transferFrom(double amount, HuskyCard otherCard) {

if (otherCard.balance >= amount) {
otherCard.balance = otherCard.balance – amount;

balance = balance + amount;

}

}

• Discuss: Is this better or worse than using 
otherCard.withdraw(…)?  Why or why not?

2/3/2004 (c) 2001-4, University of Washington J-23

Method and Instance Variable Names, Revisited

• When we write something like
name = studentName;

• or
otherCard.balance = otherCard.balance – amount;

the simple occurrence of “name” or “balance” refers to 
fields in the current object scope where the method is 
executing

• But technically, every method or instance variable has a 
full name, which is always objectName . fieldName.

• When we use a simple name like balance by itself, we 
really mean   “the current object” . balance

2/3/2004 (c) 2001-4, University of Washington J-24

“The Current Object” – this

• Java has a reserved keyword, this, that can be used to 
explicitly refer to “the current object”

• If we use a field name by itself
balance = 42.17;

it is equivalent to writing
this.balance = 42.17;

• You can write this explicitly if you want.  If you don’t, 
Java interprets the simple name as meaning this.name



CSE142 Wi04 J-7

2/3/2004 (c) 2001-4, University of Washington J-25

“this” as an Implicit Parameter

• When we send a message to an object (call a method)
card.deposit(1000)

“this” is automatically provided and initialized to refer to 
the object receiving the message

• In effect, it is an invisible parameter

2/3/2004 (c) 2001-4, University of Washington J-26

“this” – What Really Happens

• What you write:

public class HuskyCard {
int balance;
/** deposit amount in … */
public void deposit(int amount){

balance = balance + amount;

}
}

card.deposit(100);

• What Java does for you 
behind the scenes

public class HuskyCard {
int balance;
/** deposit amount in … */
public void deposit(HuskyCardHuskyCard thisthis, 

int amount){
this.this.balance = 

this.this.balance + amount;
}

}

deposit(card, 100);

• (This is quite technical, but you should 
understand the general idea)

2/3/2004 (c) 2001-4, University of Washington J-27

A Common Use for this

• Normally instance variables and local variables or parameters 
should not have the same name for style and readability

• But in constructors and sometimes in methods, it’s often more 
readable if parameter names match the fields they initialize
• If you’ve picked a good name for one it’s often the best name for the other

• Use “this” to access an instance variable whose scope is masked 
by a local parameter declaration

/** Construct new HuskyCard … */

public HuskyCard(String name, int number) { 
this.name = name;

this.number = number;
}

2/3/2004 (c) 2001-4, University of Washington J-28

Scope Rules and This

• Trace execution of
HuskyCard test = new HuskyCard(“scope demo”, 654);



CSE142 Wi04 J-8

2/3/2004 (c) 2001-4, University of Washington J-29

Summary

• Scope – the region of code in which a declaration has an 
effect
• Class scope – instance variable, methods

• Can be public (accessible outside the class) or private (only accessible inside)

• Can be masked by method parameters or local variables with the same name

• “this” –refers to the current object; use to access names with class scope

• Local scope – method parameters and local variables
• Scope is all or part of the method containing the declaration
• Can mask declarations in surrounding scopes (generally bad style, except in 
specific cases)


