
CSE142 Wi04 N1-1

6/18/2004 (c) 2001-4, University of Washington N1-1

CSE 142

Interfaces

6/18/2004 (c) 2001-4, University of Washington N1-2

Outline for Today
• Review: specification vs implementation
• Java interfaces – specifying behavior common to

several classes
• Implementing interfaces in classes
• Interface types and class types
• Interface types and collections

6/18/2004 (c) 2001-4, University of Washington N1-3

Specification vs Implementation – Review

• Two different perspectives
• Client – what is publicly available to users of a class
• Implementer – public interface + private implementation details

• Function headings and comments (JavaDoc) give us a way to
record what is available to the client – they specify the class

• Often informally thought of as the class’s interface
• However, the class combines both specification and implementation

• There are many cases where we would like to be able to give a
pure specification – no implementation details at all

6/18/2004 (c) 2001-4, University of Washington N1-4

Java Interfaces

• A new Java construct
• Looks much like a class definition

/** description of this interface */
public interface name {

/** JavaDoc comments */
specifications (only) of methods and constants that belong to the interface
// regular comments
/* are also allowed */

}

• Pure specification – no implementation

CSE142 Wi04 N1-2

6/18/2004 (c) 2001-4, University of Washington N1-5

Recall: Performer Role-Playing
• We had Performer objects that knew how to:

• Clap
• Twirl
• TellCount

• We had different types of Performer objects:
• Acrobat, Choreographer, AcrobatWithBuddy, Actor,

Curmudgeon

• Let’s implement a simulation in Java

6/18/2004 (c) 2001-4, University of Washington N1-6

Performer Interface

• File Performer.java (comments abbreviated)

/** Interface to Performer objects. … */
public interface Performer {

/** Clap nTimes … */
public void clap(int nTimes);
/** Twirl nTimes… */
public void twirl(int nTimes);
/** Report how much this performer has clapped and twirled … */
public int tellCount();

}

6/18/2004 (c) 2001-4, University of Washington N1-7

Notes

• Bodies of methods { … } replaced by ;
• Besides method headings, interfaces can contain

constants (later), but essentially nothing else
• An interface declares a type (here Performer) just like a

class definition
• Can have variables and parameters with the type (more below)

Performer bozo;

• But an interface does not contain any implementation
• Corollary: cannot create an instance of an interface (can’t use

new) (Why?)
Performer clarabelle = new Performer(); // can’t do this

6/18/2004 (c) 2001-4, University of Washington N1-8

Implementing Interfaces

• Any class can implement an interface by naming it in an
implements clause

public class Acrobat implements Performer { … }

• Meaning
• The class must provide implementations of all of the methods

declared in the interface
• The class can contain any additional methods or instance

variables desired
• Instances of the class can be used as if they had either the

class type or the interface type
[An instance of Acrobat has type Acrobat and also has type Performer]

CSE142 Wi04 N1-3

6/18/2004 (c) 2001-4, University of Washington N1-9

Examples
/** Acrobat - an implementation of Performer.*/

public class Acrobat implements Performer {

/** Twirl the specified number of times */

public void twirl(int n) { … }

/** Clap the specified number of times */

public void clap(int n) { … }

/** Report the total number of claps and twirls*/

public int tellCount() { … }

[Other methods and instance variables as
needed]

}

/** Crumudgeon- an implementation of Performer.*/

public class Crumudgeon implements Performer {

/** Twirl the specified number of times */

public void twirl(int n) { … }

/** Clap the specified number of times */

public void clap(int n) { … }

/** Report the total number of claps and twirls*/

public int tellCount() { … }

[Other methods and instance variables as needed]

}

6/18/2004 (c) 2001-4, University of Washington N1-10

What Does This Buy Us?

• Answer – can now write code that works with any sort of
Performer, regardless of the actual kind(!)

/** Make a performer twirl and then report its count
* @param p a Performer object

* @param n number of times to twirl
* @return the performer’s current count */

public int twirlAndCount(Performer p, int n) {

p.twirl(n);
return p.tellCount();

}

• When this method is called, the first argument can be an instance of any
class that implements Performer

Because the types match: instances of a class that implements Performer have type
Performer, in addition to their class type

6/18/2004 (c) 2001-4, University of Washington N1-11

Type Compatibility

• If a parameter or instance variable has a type T, then it
can refer to any object that has type T
• If T is a class type, any instance of T
• If T is an interface type, any object whose class implements T
• If T is Object, it can refer to any object

• Legal examples
Acrobat one = new Acrobat();
Performer p = one ; // one and p refer to the same object

• Not legal
Acrobat two = p; // error – p might refer to an Acrobat, but it might

// refer to a different kind of Performer, not an Acrobat
// [Can use a cast if it really is an Acrobat]

6/18/2004 (c) 2001-4, University of Washington N1-12

What Else Does This Buy Us?

• Collections!
• Suppose we have a collection

ArrayList cast = new ArrayList();

and we add a bunch of Acrobats, Choreographers,
Actors, and Curmudgeons to this collection

Acrobat tarzan = new Acrobat();
Actor jane = new Actor();
Actor chetah = new Actor();
cast.add(tarzan);
cast.add(chetah);
cast.add(jane);

CSE142 Wi04 N1-4

6/18/2004 (c) 2001-4, University of Washington N1-13

Processing the Collection

• Make every Performer in the cast clap 3 times
Iterator it = cast.iterator();
while (it.hasNext()) {

Performer perf = (Performer)it.next();
perf.clap(3);

}

• The (Performer) cast works because, regardless of the actual
type of the object (Actor, Acrobat, …), it is a Performer

[We know, because we only put objects in the list that implement Performer]

• The method call perf.clap(3) is ok because all classes that
implement Performer must implement clap(int)

[Because clap(int) is part of the Performer interface]

6/18/2004 (c) 2001-4, University of Washington N1-14

Interfaces All Around Us
• It turns out we've been using interfaces for a long time

without mentioning it!
• Iterator is an interface
• ArrayList implements an interface called List

• All of the common methods of ArrayList are actually defined by
the List interface

• uwcse.graphics has an interface called Shape
• Rectangle implements Shape
• Oval implements Shape
• TextShape implements Shape
• GWindow.add actually takes a Shape as its parameter!

6/18/2004 (c) 2001-4, University of Washington N1-15

Things Not Discussed

• Inheritance & Multiple interfaces
• Interfaces can extend other interfaces
• Classes can extend other classes and implement many

interfaces
• Interesting, powerful, and more complex
• A taste of this later this quarter, then full details in CSE143

• Full details of type compatibility rules
• Etc.

• Goal for now is to get experience with the basic
concepts

