Outline for Today

CSE 142

Sorting

6/4/2004 (c) 2001-3, University of Washington Q1

* Review
« Sequential vs Binary Searcy
* Arrays
* Maintaining an Ordered List
« Sorting
6/4/2004 (c) 2001-3, University of Washington Q-2

Linear vs Binary Search

Sorting

+ Recall work needed to search a list of n items
« Linear search ~n
« Binary search ~ log n

« For all but small lists, binary search is much, much,
much faster
« Forn=1,000, log n ~ 10
« For n=1,000,000, log n ~ 20

+ But we can only do binary search if the list is in order:
sorted

+ Today’s problem: how do we put a list in order?

« In everyday life, sorting often means “placing in categories”

« Sorting socks, sorting laundry r‘
« Sorting a catch of fish Q\ ll.!'"&
)

« Sorting the sheep from the goats >

22

=

y:

2!

=

« In computer applications, sorting means “placing in linear order”
« Alphabetizing a list of names
« Listing bank account owners in order of balance size

« Like searching, sorting is generally applied to a single collection

6/4/2004 (€) 2001-3, University of Washington Q3

6/4/2004 (€) 2001-3, University of Washington Q4

CSE142 Wi03

Sorting in the Java Libraries

* We have seen that Java has methods for sorting arrays
and lists.

« It works only if the elements
« All implement the Comparable interface
« All are in fact comparable with each other

Collections.sort(anyList);

What if...

*You can't use Collections or Arrays

+ Or your elements are not Comparable

+ Or you are working in C or C++ or some other language?
+ How can you write a sort?

» How would you do it if you weren't using a computer???

Arrays.sort(anyArray);
6/4/2004 (c) 2001-3, University of Washington Q5 6/4/2004 (c) 2001-3, University of Washington Q-6
Design Your Sorting Algorithm Here Getting The List Sorted
+ Choices

6/4/2004 (c) 2001-3, University of Washington Q-7

« Keep list sorted at all times
Need to make adjustments in add method

« Sort list before searching if not done already
Need check in contains (search) method to sort if not currently sorted
«In either case, order of items in list is no longer order in
which added
« But that's presumably ok - if we want really fast searches, this
is a tradeoff worth making
* Terminology: a multiset or bag is like a set, but may
have duplicate elements

6/4/2004 (€) 2001-3, University of Washington Qs

CSE142 Wi03

Q-2

Revised StringList Class

« StringList was an implementation of a list
« All elements were Strings
+ An array was used internally to hold the elements

+ Revision: maintain the elements in sorted (alphabetical)
order
» Same external interface (methods)
+ Same instance variables
« Perhaps only one or two methods needs to change...

[** Ordered collection of Strings, possibly with duplicate elements */
public class StringBag { ... }

Method add

6/4/2004 (c) 2001-3, University of Washington Q9

« Revised from its implementation in the (unsorted) StringList
/¥ Add str to this StringBag. Return true if successful, otherwise return false */
public boolean add(String str) {

if (this.numStrings == this.strings.length) {
return false;
}

I1'1. find correct location to place str AND 2. shift larger elements one position to the
right

11'3. place str in correct location
numsStrings++;

return true;

}

6/4/2004 (c) 2001-3, University of Washington Q-10

Maintaining a Sorted List

+ Nothing in the client interface changes
« Except: we can no longer allow client to insert arbitrary strings
in the middle of the list
Which method was that?

« Implementation now relies on list being sorted, so it's
crucial that we record this information in a comment

Il'instance variables

private String[] strings; /I Strings in this StringList are stored in

private int numStrings; // strings[0] through strings[numStrings-1],
/I and the strings are stored in ascending
Il order: strings[0] <= strings[1] <= ...
I <= strings[numStrings-1]

Modified method add (“insert”)

6/4/2004 (c) 2001-3, University of Washington Q-1

« 1. Find where the new element belongs
* 2. Make room for it

+ 3. Add it

« Picture:

« Notes:

« It is possible to combine steps 1 and 2.

« It is most effective to start from the right looking for the place to
insert the new value

« This is because you can shift values to right as you go, instead of waiting
until you have found the desired position

6/4/2004 (¢) 2001-3, University of Washington Q12

CSE142 Wi03

Q-3

Insertion Sort

« With an “add” (or “insert”) method that maintains order,
it is easy to construct a sort

+Key observation: if a list is already sorted, adding an
element gives you a longer list which is still sorted

Insertion Sort Algorithm

6/4/2004 (c) 2001-3, University of Washington Q13

Algorithm: Start from a “trivially sorted array”, insert one
value at a time, until all elements have been added
« Any empty array is trivially sorted
* Any empty array with just one element is trivially sorted

« It sounds like you need two arrays: an input array, and an
output or result array.

« Magic trick: one array is enough! You can sort the input array
in place

+Code:
For (inti=0; i < array.length-1; i++) {
Insert(array, i, array[i+1]);

}

6/4/2004 (c) 2001-3, University of Washington Q14

Other Sorting Algorithms

+ Dozens if not hundreds of sorting algorithms exist
*We just learned “Insert Sort”

+ We will now look at “Selection Sort”

» More and much better sorts in CSE143

Selection Sort

6/4/2004 (€) 2001-3, University of Washington Q15

+ Here's a different algorithm for sorting an array

+Idea: At each step, pick smallest element in not-yet-
sorted part of array and move it to the front

* Picture
0 k numstrings

strings ‘smallesmems, sorted ‘ larger items, not sorted ‘

+ Detailed step (repeat until sorted)
« Find smallest item in strings[Kk]..strings[numStrings-1]
« Swap that item with item in strings[k]
« Increase k and repeat

6/4/2004 (¢) 2001-3, University of Washington Q16

CSE142 Wi03

Q-4

Code For Selection Sort

Code for Finding Minimum Element

6/4/2004 (c) 2001-3, University of Washington Q17 6/4/2004 (c) 2001-3, University of Washington Q-18
Testing the Code Embedding in a String Collection Class
* Invent some data, run the algorithm, check that the + Our original StringList class can be changed to sort the
result is correct list as needed to allow binary search for contains
+ Can you write code which checks the result + Add an instance variable to record whether the list is sorted
automatically?? + In method add, set this variable to false
« In method contain, call the sort method if this variable is false,
then do a binary search after the sort finishes
« In method sort, set the variable to true after sorting
* Note the difference between “sorting as needed” (above)
and “maintaining sorted order”
6/4/2004 (c) 2001-3, University of Washington Q19 6/4/2004 (c) 2001-3, University of Washington Q-20
CSE142 Wi03

Q-5

Conclusion

* Performance Tradeoffs
« Sorting is relatively expensive

« Pays off if searches are frequent and clustered together
compared to additions to the list

+ Can either maintain list in sorted order at all times
(expensive add operation) or sort when needed
(potentially expensive lookup)

« For both algorithms, the diagrams give the key ideas

* The code is relatively straightforward from there

6/4/2004 (c) 2001-3, University of Washington Q21

CSE142 Wi03

Q-6

