
CSE142 Wi03 Q-1

6/4/2004 (c) 2001-3, University of Washington Q-1

CSE 142

Sorting

6/4/2004 (c) 2001-3, University of Washington Q-2

Outline for Today
• Review

• Sequential vs Binary Searcy
• Arrays

• Maintaining an Ordered List
• Sorting

6/4/2004 (c) 2001-3, University of Washington Q-3

Linear vs Binary Search

• Recall work needed to search a list of n items
• Linear search ~ n
• Binary search ~ log n

• For all but small lists, binary search is much, much,
much faster
• For n = 1,000, log n ~ 10
• For n = 1,000,000, log n ~ 20

• But we can only do binary search if the list is in order:
sorted

• Today’s problem: how do we put a list in order?

6/4/2004 (c) 2001-3, University of Washington Q-4

Sorting

• In everyday life, sorting often means “placing in categories”
• Sorting socks, sorting laundry
• Sorting a catch of fish
• Sorting the sheep from the goats

• In computer applications, sorting means “placing in linear order”
• Alphabetizing a list of names
• Listing bank account owners in order of balance size

• Like searching, sorting is generally applied to a single collection

CSE142 Wi03 Q-2

6/4/2004 (c) 2001-3, University of Washington Q-5

Sorting in the Java Libraries
• We have seen that Java has methods for sorting arrays

and lists.
• It works only if the elements

• All implement the Comparable interface
• All are in fact comparable with each other

Collections.sort(anyList);
Arrays.sort(anyArray);

6/4/2004 (c) 2001-3, University of Washington Q-6

What if...
• You can't use Collections or Arrays
• Or your elements are not Comparable
• Or you are working in C or C++ or some other language?
• How can you write a sort?
• How would you do it if you weren't using a computer???

6/4/2004 (c) 2001-3, University of Washington Q-7

Design Your Sorting Algorithm Here

6/4/2004 (c) 2001-3, University of Washington Q-8

Getting The List Sorted
• Choices

• Keep list sorted at all times
Need to make adjustments in add method

• Sort list before searching if not done already
Need check in contains (search) method to sort if not currently sorted

• In either case, order of items in list is no longer order in
which added
• But that’s presumably ok – if we want really fast searches, this

is a tradeoff worth making

• Terminology: a multiset or bag is like a set, but may
have duplicate elements

CSE142 Wi03 Q-3

6/4/2004 (c) 2001-3, University of Washington Q-9

Revised StringList Class
• StringList was an implementation of a list
• All elements were Strings
• An array was used internally to hold the elements
• Revision: maintain the elements in sorted (alphabetical)

order
• Same external interface (methods)
• Same instance variables
• Perhaps only one or two methods needs to change...

/** Ordered collection of Strings, possibly with duplicate elements */
public class StringBag { … }

6/4/2004 (c) 2001-3, University of Washington Q-10

Method add
• Revised from its implementation in the (unsorted) StringList

/** Add str to this StringBag. Return true if successful, otherwise return false */

public boolean add(String str) {
if (this.numStrings == this.strings.length) {

return false;

}
// 1. find correct location to place str AND 2. shift larger elements one position to the

right

…
// 3. place str in correct location

…
numStrings++;
return true;

}

6/4/2004 (c) 2001-3, University of Washington Q-11

Maintaining a Sorted List
• Nothing in the client interface changes

• Except: we can no longer allow client to insert arbitrary strings
in the middle of the list

Which method was that?

• Implementation now relies on list being sorted, so it’s
crucial that we record this information in a comment

// instance variables
private String[] strings; // Strings in this StringList are stored in
private int numStrings; // strings[0] through strings[numStrings-1],

// and the strings are stored in ascending
// order: strings[0] <= strings[1] <= …
// <= strings[numStrings-1]

6/4/2004 (c) 2001-3, University of Washington Q-12

Modified method add (“insert”)
• 1. Find where the new element belongs
• 2. Make room for it
• 3. Add it
• Picture:

• Notes:
• It is possible to combine steps 1 and 2.
• It is most effective to start from the right looking for the place to

insert the new value
• This is because you can shift values to right as you go, instead of waiting

until you have found the desired position

CSE142 Wi03 Q-4

6/4/2004 (c) 2001-3, University of Washington Q-13

Insertion Sort
• With an “add” (or “insert”) method that maintains order,

it is easy to construct a sort

• Key observation: if a list is already sorted, adding an
element gives you a longer list which is still sorted

6/4/2004 (c) 2001-3, University of Washington Q-14

Insertion Sort Algorithm
Algorithm: Start from a “trivially sorted array”, insert one

value at a time, until all elements have been added
• Any empty array is trivially sorted
• Any empty array with just one element is trivially sorted
• It sounds like you need two arrays: an input array, and an

output or result array.
• Magic trick: one array is enough! You can sort the input array

in place

• Code:
For (int i = 0; i < array.length-1; i++) {

Insert(array, i, array[i+1]);
}

6/4/2004 (c) 2001-3, University of Washington Q-15

Other Sorting Algorithms

• Dozens if not hundreds of sorting algorithms exist
• We just learned “Insert Sort”
• We will now look at “Selection Sort”
• More and much better sorts in CSE143

6/4/2004 (c) 2001-3, University of Washington Q-16

Selection Sort

• Here’s a different algorithm for sorting an array
• Idea: At each step, pick smallest element in not-yet-

sorted part of array and move it to the front
• Picture

• Detailed step (repeat until sorted)
• Find smallest item in strings[k]..strings[numStrings-1]
• Swap that item with item in strings[k]
• Increase k and repeat

0 k numStrings

strings smallest items, sorted larger items, not sorted

CSE142 Wi03 Q-5

6/4/2004 (c) 2001-3, University of Washington Q-17

Code For Selection Sort

6/4/2004 (c) 2001-3, University of Washington Q-18

Code for Finding Minimum Element

6/4/2004 (c) 2001-3, University of Washington Q-19

Testing the Code

• Invent some data, run the algorithm, check that the
result is correct

• Can you write code which checks the result
automatically??

6/4/2004 (c) 2001-3, University of Washington Q-20

Embedding in a String Collection Class

• Our original StringList class can be changed to sort the
list as needed to allow binary search for contains
• Add an instance variable to record whether the list is sorted
• In method add, set this variable to false
• In method contain, call the sort method if this variable is false,

then do a binary search after the sort finishes
• In method sort, set the variable to true after sorting

• Note the difference between “sorting as needed” (above)
and “maintaining sorted order”

CSE142 Wi03 Q-6

6/4/2004 (c) 2001-3, University of Washington Q-21

Conclusion

• Performance Tradeoffs
• Sorting is relatively expensive
• Pays off if searches are frequent and clustered together

compared to additions to the list

• Can either maintain list in sorted order at all times
(expensive add operation) or sort when needed
(potentially expensive lookup)

• For both algorithms, the diagrams give the key ideas
• The code is relatively straightforward from there

