
CSE142 Wi04 U-1

3/1/2004 (c) 2001-4, University of Washington U-1

CSE 142

Inheritance In Java

3/1/2004 (c) 2001-4, University of Washington U-2

Outline for Today

• Review from last time
• Classes can be related by inheritance

Defines an “is-a” relationship between classes

• A base class (or superclass) defines properties/
responsibilities shared by a set of related classes

• A derived class (or subclass) extends a base class
Inherits all of the properties/responsibilities of the base class

Can define additional properties/responsibilities

• Goal for today
• Learn how to do this in Java
• Explore some of the implications

3/1/2004 (c) 2001-4, University of Washington U-3

Library Circulation System Classes

• Simplified version of design from last time
• Class CirculationItem – class with common information

• State: title, call number, and whether checked out
• Methods: retrieve title, call number; check in and out, etc.

• Class Book – extended version of CirculationItem
• Additional state – author
• Additional methods – get author

• Class Journal – extended version of CirculationItem
• Additional state – list of articles
• Additional methods – get/set list of articles

3/1/2004 (c) 2001-4, University of Washington U-4

Class CirculationItem (1)
• Very similar to other classes we’ve seen

/** Representation of common properties of items in a library's circulation system */
public class CirculationItem {
// instance variables
private String title; // book or journal title
private String callNumber; // Library of Congress call #
private boolean checkedOut; // = "this item is currently checked out"

/** Construct new CirculationItem with specified title and call # */
public CirculationItem(String title, String callNumber) { … }}

/** Return the title of this CirculationItem */
public String getTitle() { … }

/** Return the call number of this CirculationItem */
public String getCallNumber() { … }
…

CSE142 Wi04 U-2

3/1/2004 (c) 2001-4, University of Washington U-5

Class CirculationItem (2)
…
/** Check in this CirculationItem */
public void checkin() { checkedOut = false; }

/** Check out this CirculationItem */
public void checkout() { checkedOut = true; }

/** = "this item is in the library" */
public boolean inLibrary() { return !checkedOut; }

public String toString() {
return "CirculationItem(title=" + title + ", callNumber=" + callNumber +

"checked out=" + checkedOut + ")";
}

}

3/1/2004 (c) 2001-4, University of Washington U-6

Class Book

• Like a regular class declaration, but with an extends
clause

/** Representation of a book */
public class Book extends CirculationItem {

// additional state
private String author; // author(s) of this book
/** Construct a Book with the given title, author, and call number */
public Book(String title, String author, String callNumber) { … }
/** return the author of this book */
public String getAuthor() { return author; }
/** return a string representation of this book */
public String toString() { … }

}

3/1/2004 (c) 2001-4, University of Washington U-7

Implications

• A Book object is a CirculationItem with additional state
(author) and methods (constructor, getAuthor)

• Each instance of Book contains all of the state inherited
from CirculationItem plus the additional state declared in
Book
• But private information in CirculationItem is accessible only

inside that class – something we’ll have to deal with

• Any method in either class can be applied to an instance
of Book
• Has to be visible (public) at the point it is used, of course

3/1/2004 (c) 2001-4, University of Washington U-8

Draw the Diagram
Book tome = new Book(“War and Peace”, “Tolstoy”, “PG3366.V6 1991”);

CSE142 Wi04 U-3

3/1/2004 (c) 2001-4, University of Washington U-9

Constructing a Book

• When we define a class, we should use constructors to
properly initialize the state of instances of the class

• For a Book…
• trivial to initialize author instance variable
• How do we initialize the inherited state (title, call #,

checkedOut)?
- Can’t reference inherited fields directly – they’re private (and we want them to
stay that way)
- Can’t “call” a constructor and don’t want a new, separate, CirculationItem object

• Solution: special syntax to run superclass (CirculationItem)
constructor at very beginning of Book constructor

super(arguments);

Must be the very first thing in the Book constructor

3/1/2004 (c) 2001-4, University of Washington U-10

Book Constructor
/** Construct a book with the given title, author, and call number */
public Book(String title, String author, String callNumber) {

}

3/1/2004 (c) 2001-4, University of Washington U-11

Execution – Yet Another Diagram

• What really happens when we execute
Book tome = new Book(“War and Peace”, “Tolstoy”, “PG3366.V6 1991”);

3/1/2004 (c) 2001-4, University of Washington U-12

Using Books

• Demo
Book b = new Book(…)

b.getAuthor()

b.checkout()

…

CSE142 Wi04 U-4

3/1/2004 (c) 2001-4, University of Washington U-13

Books and CirculationItems (1)

• Book and CirculationItem are both types
• An instance of Book has type Book…
• … and also has type CirculationItem (since a Book is an

extended CirculationItem)
• So this works

Book b = new Book(…);

CirculationItem c = b;

c.getTitle()

3/1/2004 (c) 2001-4, University of Washington U-14

Books and CirculationItems (2)

• But neither of these are allowed, even though CirculationItem c
actually refers to an instance of Book (why not?)
c.getAuthor()
Book novel = c;

• Solution: we can use a cast to claim that it really is a
Book (checked at runtime and trouble if it isn’t)

3/1/2004 (c) 2001-4, University of Washington U-15

Another Extended Class – Journal
/** Representation of a Journal */
public class Journal extends CirculationItem {

// additional state

private ArrayList articles; // names of articles in this Journal

/** Construct a new Journal with title, call number, and empty article list */
public Journal(String title, string callNumber) {

}

// additional methods to get and set article list omitted

}

3/1/2004 (c) 2001-4, University of Washington U-16

Mixing Journals and Books

• Since Books and Journals are all CirculationItems, we
can write methods that can process any of these without
having to distinguish which one – as long as we only
use methods defined in CirculationItem

/** print the title of the given CirculationItem */

public void printTitle(CirculationItem item) {

System.out.println(item.getTitle());

}

• Same idea when using interface types as parameters
• Method printTitle is said to be polymorphic (meaning many

types) because its parameters can be objects of different
related types

CSE142 Wi04 U-5

3/1/2004 (c) 2001-4, University of Washington U-17

Collections of CirculationItems

• It’s common for a collection to contain objects of related
types

ArrayList bookBag = new ArrayList();

bookBag.add(new Book(…));
bookBag.add(new Journal(…));

• We need appropriate casts to do anything specific with
objects from this list
• Cast to (CirculationItem) if we only need operations common to

all subclasses
• Can use instanceof and casts to specific classes (Book,

Journal) if finer distinctions are needed – details in the book

