CSE 142, Autumn 2006

Programming Assignment #5: Guess 2D (20 points)
Part A Due: Monday, October 30, 2006, 9:00 PM (optional; +1 late day)
Part B Due: Wednesday, November 1, 2006, 9:00 PM (20 points)

Problem Description:

This assignment will give you practice withi | e loops and random numbers. Your program allowsiie to play a
guessing game. The program thinks of a randomdit,pand the user guesses points until the rightvar is found.

This assignment will be due in two parts: a paséion and a second complete versidhe initial turnin, Part A, is
optional and isworth no points, but will earn you an extralate day. Part B isworth 20 points. For Part A, you will
turn in a Java class namegkss2Da in a file namediuess2Da. j ava. For Part B, you will turn in a Java class named
Guess2Db in a file namedtuess2Db. j ava. Let's examine Part B first and then discuss \wlikfferent about Part A.

Program Behavior (Part B):

This programis a 2-D guessing gane.
I will think of a point

between (1, 1) and (10, 10)

and give hints until you guess it.

In the final second version of the game, the coepcitooses a point
between (1, 1) and (10, 10) inclusive. The useepeatedly asked to
guess the point. For each incorrect guess, thgramowill tell the
user whether it is warmécloser than the previous guess), colder

Guess x and y: 6 6 L . -

I ncorr ect . - (equidistant or further away than the previous gyes _hot(within a

\%ess x and y: 3 6 distance of 1 from the right answer). When the gamds, the
rmer.

Quess x and y: 3 3 program reports how many guesses were needed.

Vear ner . _ After each game, the program asks the user toggain. You may

gFSZrX and y: 2 2 assume that the user will give a one-word answWe program

Guess x and y: 12 should continue playing if the user's responsertsegith a lower- or

VA rrer . upper-case Y. That is, answers suchyas" vy, " YES", "yes",

%telss x and y: 15 "Yes", or"yeehaw' would all indicate that the user wants to play

Quess x and y: 1 4 again. If the answer is not a definitive Yes answesume that the

user does not want to play again. For examplporeses such as
"no","No","0", and" Pass" are all assumed to mean No.

You got it rith in 7 guesses!
Do you want to play again? y

Guess x and y: 55 Once the user ends a game and chooses not togalay the

I ncorrect. program prints overall statistics about the gantagaul. The total
Guess x and y: 8 5

Hot | — number of games, total guesses for all games, g@enamber of
Guess x and y: 9 5 guesses per game (as a real number rounded tedhneshtenth), and

You got it right in 3 guesses!
Do you want to play again? y

best game (fewest guesses) are displayed. Ydiststsshould
present correct information regardless of how ngumsses were

Guess x and y: 5 2 needed or games were played, within the limitsaeb3 maximum

I ncorrect. - values. (In other words, the statistics shoulddreect even if the
Guess x and y: 2 2 user has a game where they need a large numbeasudl® guesses
g‘reg‘;r;(and vi 1 2 to get the right answer, and even if the user pdalgsge number of
VAT ITer . yoz= games, and even if only 1 game is played, and 90 on

cuess x and y: 18 The log of execution on this page demonstrates pragram's

Guess x and y: 1 7 behavior. Your program may generate different eamgboints, but

Hot ! your output structure should match this one exactly
CGuess x and y: 1 6

You got it right in 6 guesses!
Do you want to play again? n

You may assume that the user will need fewer ti)9 uesses to
solve any given game.

Overall results:

Ganes played = 3
Total guesses = 16
Guesses/gane = 5.3
Best ganme =3

1of2

Program Behavior (Part A):

CORRECT ANSWER: 9 5 . . :
Guess x and y: 1 2 In Part A, only a single guessing game is playledrt A does not

I ncorrect. T need to print any initial welcome message or pramgtuser to play
\%953 x and y: 8 6 additional games. To help your debugging, Parhdutd also print
Giose % and v 56 the correct random answer at the start of the pragr

g'eggr;(and y: 10 6 You will receive an extra late day if you submittPa on time. No
Vr ner . . bonus will be awarded if Part A is submitted latesonot submitted.
Sjof!ss x andy: 85 To get the late day, your program must roughly m#te correct
Quess x and y: 95 expected behavior such as the example log of execat left. Your
You got it right in 6 guesses! program may generate different random points, but putput

structure should match this one. It will be exasdiior external
correctness (output) only. You will not receivedback on your Part
A turnin before you submit Part B.

Implementation Guidelines:

The hints about guesses being warmer or colddsased on distances between points. The formuartpute the
distance between two points is to take the squmreaf the squares of the differences in x andtwben the two points.
For example, in the log of execution for Part Ae thistance between (9, 5) and (1, 2J([#-1Y + (5-2¥) or roughly
8.544. The distance between (9, 5) and (8, 8{(&8) + (5-6)) or roughly 1.414. Therefore, (8, 6) is closart1, 2)
and the hint given is "Warmer." If the current gsiés equidistant or further from the right ansthan the previous
guess, the hint should be "Colder." Regardleshaprevious guess, if the current guess is wihilistance of 1.0 from
the right point, the hint should be "Hot!". Thestiwrong guess has no point of comparison anetbie just prints
"Incorrect.".

You may wish to implement this behavior by repréisgnthe correct answer and user's gues®iag objects (as shown
in Chapter 3) and using theirst ance method. Remember toport java. awt . *; if you usePoi nt in your program.

If the user guesses the number correctly in oneyty may still print the textyou got it right in 1 guesses”
though the wordguess” would be more appropriate. We will not test ttase when grading.

Assume valid user input. When the user is promfiedumbers, the user will type valid integershe proper range.
When the user is prompted to play again, the ugietywe a one-word string as their answer. Toldéth the yes/no
response from the user, you may want to use sorteeefri ng class methods described in Chapters 3 and 4 difdble.

Stylistic Guidelines for Part B:

Structure your solution using static methods tleabpt parameters and return values where apprepriadr full credit on
Part B, you must have at least 2 methods otherrtian in your program: a method to play a singlegavith the user
(not multiple games), and a method to report trerall/statistics to the user.

You should define other methods if they are usefdliminate redundancy. If you like, you can gdlee loop that plays
multiple games and prompts the user to play an@here in yourai n method.

For full credit, you must define a class constant for the maximum x/y number used in the guessing game. The

sample log shows the user making guesses froniQ, tout by introducing a constant for 10, you sHdwe able to make
the program play the game over any other rangérsiawith (1, 1) just by changing the constantiiga For example, if
it is changed to 5, your program picks (x, y) psibetween (1, 1) and (5, 5). See the course welfiosiexpected output.

For this assignment you are limited to the languUagéures in Chapters 1 through 5 of the textbdokient your code
properly and use white space to make your prograne meadable. Give meaningful names to methodvanables,
and follow Java's naming standards as specifi€&hapter 1 of the textbook. Localize variables vévem possible.
Include a comment at the beginning of your progwéth basic information and a description of thegreon and include
a comment at the start of each method. Sincetbigram has longer methods than past programspatdarief
comments inside the methods explaining the moreptensections of your code.

20f2

