
1Copyright 2006 by Pearson Education

Building Java ProgramsBuilding Java Programs

Chapter 2: Primitive Data 
and Definite Loops



2Copyright 2006 by Pearson Education

Chapter outline
� data concepts

� primitive types, expressions, and precedence
� variables: declaration, initialization, assignment
� mixing types: casting, string concatenation
� modify-and-reassign operators
� System.out.print

� repetition
� the for loop

� nested loops

� managing complexity
� variable scope
� class constants

� drawing complex figures



3Copyright 2006 by Pearson Education

reading: 2.1

Primitive data and Primitive data and 

expressionsexpressions



4Copyright 2006 by Pearson Education

Programs that examine data
� We have printed text with println and strings:

System.out.println("Hello, world!");

� Now we will learn how to print and manipulate other 
kinds of data, such as numbers:

// OUTPUT:

System.out.println(42);              // 42

System.out.println(3 + 5 * 7);       // 38

System.out.println(12.5 / 8.0);      // 1.5625



5Copyright 2006 by Pearson Education

Data types
� type: A category or set of data values.

� Many languages have a notion of data types and ask the 
programmer to specify what type of data is being manipulated.

� Examples: integer, real number, string.

� Internally, the computer stores all data as 0s and 1s.
� examples: 42 101010

"hi" 0110100001101001



6Copyright 2006 by Pearson Education

Java's primitive types
� primitive types: Java's built-in simple data types for 

numbers, text characters, and logic.

� Java has eight primitive types.

� Types that are not primitive are called object types. (seen later)

� Four primitive types we will use:

Name Description Examples

� int integers (whole numbers) 42,  -3 ,  0,  926394

� double real numbers 3.14 ,  -0.25 ,  9.4e3

� char single text characters 'a' ,  'X' ,  '?' ,  '\n'

� boolean logical values true ,  false



7Copyright 2006 by Pearson Education

Expressions
� expression: A data value, or a set of operations that 

compute a data value.

Example: 1 + 4 * 3

� The simplest expression is a literal value.

� A complex expression can use operators and parentheses.

� The values to which an operator applies are called operands.

� Five arithmetic operators we will use:
� + addition

� - subtraction or negation

� * multiplication

� / division

� % modulus, a.k.a. remainder



8Copyright 2006 by Pearson Education

Evaluating expressions
� As your Java program executes:

� When a line with an expression is reached, the expression is 
evaluated (its value is computed).

� 1 + 1 is evaluated to 2

� System.out.println(3 * 4); prints 12
(How would we print the text 3 * 4 ?)

� When an expression contains more than one operator of 
the same kind, it is evaluated left-to-right.

� 1 + 2 + 3 is  (1 + 2) + 3 which is  6

� 1 - 2 - 3 is  (1 - 2) - 3 which is  -4



9Copyright 2006 by Pearson Education

Integer division with /
� When we divide integers, the quotient is also an integer.

� 14 / 4 is  3, not 3.5

3 4 52
4 ) 14           10 ) 45               27 ) 1425

12 40 135
2                 5                      75

54
21

� More examples:
� 1425 / 27 is  52

� 35 / 5 is  7

� 84 / 10 is  8

� 156 / 100 is  1

� Dividing by 0 causes an error when your program runs.



10Copyright 2006 by Pearson Education

Integer remainder with %
� The %operator computes the remainder from a division 

of two integers.
� 14 % 4 is  2

� 218 % 5 is  3

3 43
4 ) 14                   5 ) 218

12 20
2 18

15
3

� What are the results of the following expressions?
� 45 % 6

� 2 % 2

� 8 % 20

� 11 % 0



11Copyright 2006 by Pearson Education

Applications of % operator
� Obtains the last digit (units place) of a number:

� Example: From 230857 , obtain the 7.

� Obtain the last 4 digits of a Social Security Number:
� Example: From 658236489 , obtain 6489 .

� Obtains a number's second-to-last digit (tens place):
� Example: From 7342 , obtain the 4.

� Use the %operator to see whether a number is odd:
� Can it help us determine whether a number is divisible by 3?



12Copyright 2006 by Pearson Education

Operator precedence
� precedence: Order in which operations are computed.

� * / % have a higher level of precedence than + -

1 + 3 * 4 is 13

� Parentheses can be used to force a certain order of evaluation.

(1 + 3) * 4 is 16

� Spacing does not affect order of evaluation.

1+3 * 4-2 is 11



13Copyright 2006 by Pearson Education

Precedence examples
� 1 * 2 + 3 * 5 / 4
� \_/

|
2 + 3 * 5 / 4

� \_/
|

2   +  15 / 4
� \___/

|
2   +      3

� \________/
| 
5

� 1 + 2 / 3 * 5 - 4
� \_/

|
1 +   0 * 5 - 4

� \___/
|

1 +      0 - 4
� \______/

|
1 - 4

� \_________/
| 
-3



14Copyright 2006 by Pearson Education

Precedence questions
� What values result from the following expressions?

� 9 / 5

� 695 % 20

� 7 + 6 * 5

� 7 * 6 + 5

� 248 % 100 / 5

� 6 * 3 - 9 / 4

� (5 - 7) * 4

� 6 + (18 % (17 - 12))



15Copyright 2006 by Pearson Education

Real numbers (double)
� Java can also manipulate real numbers (type double ).

� Examples: 6.022 -15.9997 42.0 2.143e17

� The operators + - * / % ( ) all work for real numbers.

� The / produces an exact answer when used on real numbers.
15.0 / 2.0 is 7.5

� The same rules of precedence that apply to integers 
also apply to real numbers.
� Evaluate  ( ) before  * / % before  + -



16Copyright 2006 by Pearson Education

Real number example
� 2.0 * 2.4 + 2.25 * 4.0 / 2.0
� \___/

|
4.8 + 2.25 * 4.0 / 2.0

� \___/
|

4.8    +    9.0 / 2.0
� \_____/

|
4.8    +        4.5

� \____________/
| 
9.3



17Copyright 2006 by Pearson Education

Real number precision
� The computer internally represents real numbers in an 

imprecise way.

� Example:

System.out.println(0.1 + 0.2);

� The mathematically correct answer should be 0.3

� Instead, the output is 0.30000000000000004

� Later we will learn some ways to produce a better 
output for examples like the above.



18Copyright 2006 by Pearson Education

Mixing integers and reals
� When a Java operator is used on an integer and a real 

number, the result is a real number.
� 4.2 * 3 is  12.6
� 1 / 2.0 is  0.5

� The conversion occurs on a per-operator basis.  It 
affects only its two operands.

� 7 / 3 * 1.2 + 3 / 2
� \_/

|
2 * 1.2 + 3 / 2

� \___/
|
2.4 + 3 / 2

� \_/
|

2.4     +   1
� \________/

| 
3.4

� Notice how 3 / 2 is still 1 above, not 1.5 .



19Copyright 2006 by Pearson Education

Mixed types example
� 2.0 + 10 / 3 * 2.5 - 6 / 4
� \___/

|
2.0 +    3 * 2.5 - 6 / 4

� \_____/
|

2.0 +      7.5 - 6 / 4
� \_/

|
2.0 +      7.5     - 1

� \_________/
| 
9.5 - 1

� \______________/
| 
8.5



20Copyright 2006 by Pearson Education

reading: 2.2

VariablesVariables



21Copyright 2006 by Pearson Education

The computer's memory
� Expressions are like using the computer as a calculator.

� Calculators have memory keys to store/retrieve values.

� When is this useful?

� We'd like the ability to save and restore 
values in our Java programs, like the 
memory keys on the calculator.



22Copyright 2006 by Pearson Education

Variables
� variable: A piece of your computer's memory that is 

given a name and type and can store a value.

� Usage:

� compute an expression's result,

� store that result into a variable,

� and use that variable later in the program.

� Unlike with a calculator, we can declare as many variables as 
we want.

� Variables are a bit like preset stations on a car stereo.



23Copyright 2006 by Pearson Education

Declaring variables
� variable declaration statement: A Java statement 

that creates a new variable of a given type.

� A variable is declared in a statement with its type and name.

� Variables must be declared before they can be used.

� Declaration syntax:

<type> <name> ;

� int x;

� double myGPA;

� The name can be any identifier.



24Copyright 2006 by Pearson Education

More on declaring variables
� Declaring a variable sets aside a piece of memory in 

which you can store a value.

� int x;
� int y;

� Part of the computer's memory:

x           y       (The memory has no values in it yet.)



25Copyright 2006 by Pearson Education

Assignment statements
� assignment statement: A statement that stores a 

value into a variable's memory.
� Variables must be declared before they can be assigned a value.

� Assignment statement syntax:
<name> = <value> ;

� x = 3;

� myGPA = 3.25;

x     3       myGPA    3.25 



26Copyright 2006 by Pearson Education

More about assignment
� The <value> assigned can be a complex expression.

� The expression is evaluated; the variable stores the result.

� x = (2 + 8) / 3 * 5;

x      15

� A variable can be assigned a value more than once.
� Example:

int x;
x = 3;
System.out.println(x);   // 3

x = 4 + 7;
System.out.println(x);   // 11



27Copyright 2006 by Pearson Education

Using variables' values
� Once a variable has been assigned a value, it can be 

used in an expression, just like a literal value.
int x;
x = 3;
System.out.println( x * 5 - 1);

� The above has output equivalent to:

System.out.println(3 * 5 - 1);



28Copyright 2006 by Pearson Education

Assignment and algebra
� Though the assignment statement uses the = character, 

it is not an algebraic equation.
� = means, "store the value on the right in the variable on the left"

� Some people read  x = 3; as, "x becomes 3" or, "x gets 3"

� We would not say  3 = 1 + 2; because 3 is not a variable.

� What happens when a variable is used on both sides of 
an assignment statement?

� int x;

x = 3;

x = x + 2;   // what happens?

� The above wouldn't make any sense in algebra...



29Copyright 2006 by Pearson Education

Some errors
� A compiler error will result if you declare a variable 

twice, or declare two variables with the same name.
� int x;

int x;                   // ERROR: x already exists

� A variable that has not been assigned a value cannot be 
used in an expression or println statement.

� int x;

System.out.println(x);   // ERROR: x has no value



30Copyright 2006 by Pearson Education

Assignment and types
� A variable can only store a value of its own type.

� int x;
x = 2.5;   // ERROR: x can only store int

� An int value can be stored in a double variable.

� The value is converted into the equivalent real number.

� double myGPA;
myGPA = 2;

myGPA    2.0 



31Copyright 2006 by Pearson Education

Assignment examples
� What is the output of the following Java code?

int number;
number = 2 + 3 * 4;
System.out.println(number - 1);

number = 16 % 6;
System.out.println(2 * number);

� What is the output of the following Java code?
double average;
average = (11 + 8) / 2;
System.out.println(average);

average = (5 + average * 2) / 2;
System.out.println(average);



32Copyright 2006 by Pearson Education

Declaration/initialization
� A variable can be declared and assigned an initial value 

in the same statement.

� Declaration/initialization statement syntax:

<type> <name> = <value> ;

� double myGPA = 3.95;

� int x = (11 % 3) + 12; same effect as:

double myGPA;
myGPA = 3.95;

int x;
x = (11 % 3) + 12;



33Copyright 2006 by Pearson Education

Multiple declaration error
� The compiler will fail if you try to declare-and-initialize a 

variable twice.
� int x = 3;

System.out.println(x);

int x = 5;      // ERROR: variable x already exists
System.out.println(x);

� This is the same as trying to declare x twice.

� How can the code be fixed?



34Copyright 2006 by Pearson Education

Multiple declarations per line
� It is legal to declare multiple variables on one line:

<type> <name>, <name>, ..., <name> ;

� int a, b, c;

� double x, y;

� It is legal to declare/initialize several at once:
<type> <name> = <value> , ..., <name> = <value> ;

� int a = 2, b = 3, c = -4;

� double grade = 3.5, delta = 0.1;

� The variables must be of the same type.



35Copyright 2006 by Pearson Education

Integer or real number?
� Categorize each of the following quantities by whether an int or 

double variable would best to store it:

real number (double )integer (int )

1. Temperature in degrees Celsius

2. The population of lemmings

3. Your grade point average

4. A person's age in years

5. A person's weight in pounds

6. A person's height in meters

7. Number of miles traveled

8. Number of dry days in the past month

9. Your locker number

10. Number of seconds left in a game

11. The sum of a group of integers

12. The average of a group of integers



36Copyright 2006 by Pearson Education

Type casting
� type cast: A conversion from one type to another.

Common uses:

� To promote an int into a double to achieve exact division.

� To truncate a double from a real number to an integer.

� type cast syntax:

( <type> ) <expression>

Examples:

� double result = (double) 19 / 5;     // 3.8

� int result2 = (int) result;          // 3



37Copyright 2006 by Pearson Education

More about type casting
� Type casting has high precedence and only casts the 

item immediately next to it.

� double x = (double) 1 + 1 / 2;       // 1

� double y = 1 + (double) 1 / 2;       // 1.5

� You can use parentheses to force evaluation order.
� double average = (double) (a + b + c) / 3;

� A conversion to double can be achieved in other ways.

� double average = 1.0 * (a + b + c) / 3;



38Copyright 2006 by Pearson Education

String concatenation
� string concatenation: Using the + operator between 

a String and another value to make a longer String.

� Examples:
� Recall: Precedence of + operator is below * / %

"hello" + 42 is  "hello42"

1 + "abc" + 2 is  "1abc2"

"abc" + 1 + 2 is  "abc12"

1 + 2 + "abc" is  "3abc"
"abc" + 9 * 3 is  "abc27"

"1" + 1 is  "11"

4 - 1 + "abc" is  "3abc"

"abc" + 4 - 1 causes a compiler error... why?



39Copyright 2006 by Pearson Education

Printing String expressions
� String expressions with + are useful so that we can print 

complicated messages that involve computed values.

� double grade = (95.1 + 71.9 + 82.6) / 3.0;

System.out.println( "Your grade was " + grade);

int students = 11 + 17 + 4 + 19 + 14;
System.out.println( "There are " + students +

" students in the course.");

Output:

Your grade was 83.2

There are 65 students in the course.



40Copyright 2006 by Pearson Education

Example variable exercise
� Write a Java program that stores the following data:

� Section AA has 17 students.

� Section AB has 8 students.

� Section AC has 11 students.

� Section AD has 23 students.

� Section AE has 24 students.

� Section AF has 7 students.

� The average number of students per section.

and prints the following:
There are 24 students in Section AE.

There are an average of 15 students per section.



41Copyright 2006 by Pearson Education

Increment and decrement
� The increment and decrement operators increase or 

decrease a variable's value by 1.

Shorthand Equivalent longer version

<variable> ++ ; <variable> = <variable> + 1;

<variable> -- ; <variable> = <variable> - 1;

� Examples:
int x = 2;
x++; // x = x + 1;

// x now stores 3

double gpa = 2.5;
gpa--; // gpa = gpa - 1;

// gpa now stores 1.5



42Copyright 2006 by Pearson Education

Modify-and-assign operators
� Java has several shortcut operators that allow you to 

quickly modify a variable's value:

Shorthand Equivalent longer version

<variable> += <value> ; <variable> = <variable> + <value> ;

<variable> -= <value> ; <variable> = <variable> - <value> ;

<variable> *= <value> ; <variable> = <variable> * <value> ;

<variable> /= <value> ; <variable> = <variable> / <value> ;

<variable> %= <value> ; <variable> = <variable> % <value> ;

� Examples:
� x += 3; // x = x + 3;

� gpa -= 0.5; // gpa = gpa - 0.5;

� number *= 2; // number = number * 2;



43Copyright 2006 by Pearson Education

System.out.print command
� Recall: System.out.println prints a line of output and 

then advances to a new line.

� System.out.print prints without moving to a new line.
� This allows you to print partial messages on the same line.

� Example:

� System.out.print("Kind of");
System.out.print("Like a cloud,");
System.out.println("I was up");
System.out.print("Way up ");
System.out.println("in the sky");

Output:
Kind ofLike a cloud,I was up
Way up in the sky



44Copyright 2006 by Pearson Education

reading: 2.3

The The forfor looploop



45Copyright 2006 by Pearson Education

Repetition with for loops
� So far, when we wanted to perform a task multiple 

times, we have written redundant code:

� System.out.println("I am so smart");
System.out.println("I am so smart");
System.out.println("I am so smart");
System.out.println("I am so smart");
System.out.println("I am so smart");
System.out.println("S-M-R-T");
System.out.println("I mean S-M-A-R-T");

� Java has a statement called a for loop statement that 
instructs the computer to perform a task many times.

� for (int i = 1; i <= 5; i++) {   // repeat 5 times
System.out.println("I am so smart");

}
System.out.println("S-M-R-T");
System.out.println("I mean S-M-A-R-T");



46Copyright 2006 by Pearson Education

for loop syntax
� for loop: A Java statement that executes a group of 

statements repeatedly until a given test fails.

� General syntax:

for ( <initialization> ; <test> ; <update>) {

<statement>;

<statement>;
...

<statement>;
}

� Example:

for (int i = 1; i <= 10; i++) {
System.out.println("His name is Robert Paulson");

}

body

header



47Copyright 2006 by Pearson Education

for loop over range of ints
� We'll write for loops over integers in a given range.

� The loop declares a loop counter variable that is used in the 
test, update, and body of the loop.

for (int <name> = 1; <name> <= <value>; <name>++)

� Example:

for (int i = 1; i <= 6; i++) {
System.out.println(i + " squared is " + (i * i));

}

� Interpretation: "For each integer i from 1 through 6, ..."

� Output:
1 squared is 1
2 squared is 4
3 squared is 9
4 squared is 16
5 squared is 25
6 squared is 36



48Copyright 2006 by Pearson Education

for loop flow diagram
� Behavior of the for loop:

� Start out by performing the <initialization> once.

� Repeatedly execute the <statement(s)> followed by the 
<update> as long as the <test> is still a true statement.



49Copyright 2006 by Pearson Education

Let's walk through the following for loop:

for (int i = 1; i <= 3; i++) {
System.out.println(i + " squared is " + (i * i));

}

Output:
1 squared is 1
2 squared is 4
3 squared is 9

i

Loop walkthrough



50Copyright 2006 by Pearson Education

Another example for loop
� The body of a for loop can contain multiple lines.

� Example:

System.out.println("+----+");
for (int i = 1; i <= 3; i++) {

System.out.println("\\ /");
System.out.println("/    \\");

}
System.out.println("+----+");

� Output:
+----+
\ /
/    \
\ /
/    \
\ /
/    \
+----+



51Copyright 2006 by Pearson Education

Some for loop variations
� The initial and final values for the loop counter variable can be 

arbitrary numbers or expressions:

� Example:

for (int i = -3; i <= 2; i++) {

System.out.println(i);

}

� Output:
-3
-2
-1
0
1
2

� Example:

for (int i = 1 + 3 * 4; i <= 5248 % 100; i++) {

System.out.println(i + " squared is " + (i * i));

}



52Copyright 2006 by Pearson Education

Downward-counting for loop
� The update can also be a -- or other operator, to make 

the loop count down instead of up.
� This also requires changing the test to say >= instead of <= .

System.out.print("T-minus ");

for (int i = 10; i >= 1; i --) {

System.out.print(i + ", ");

}

System.out.println("blastoff!");

� Output:

T-minus 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, blastoff!



53Copyright 2006 by Pearson Education

Single-line for loop
� When a for loop only has one statement in its body, the 

{ } braces may be omitted.

for (int i = 1; i <= 6; i++)
System.out.println(i + " squared is " + (i * i));

� However, this can lead to mistakes where a line appears 
to be inside a loop, but is not:

� for (int i = 1; i <= 3; i++)
System.out.println("This is printed 3 times");
System.out.println("So is this... or is it?");

� Output:
This is printed 3 times
This is printed 3 times
This is printed 3 times
So is this... or is it?



54Copyright 2006 by Pearson Education

for loop questions
� Write a loop that produces the following output.

On day #1 of Christmas, my true love sent to me
On day #2 of Christmas, my true love sent to me
On day #3 of Christmas, my true love sent to me
On day #4 of Christmas, my true love sent to me
On day #5 of Christmas, my true love sent to me
...
On day #12 of Christmas, my true love sent to me

� Write a loop that produces the following output.
2 4 6 8
Who do we appreciate



55Copyright 2006 by Pearson Education

Mapping loops to numbers
� Suppose that we have the following loop:

for (int count = 1; count <= 5; count++) {

...

}

� What statement could we write in the body of the loop that 
would make the loop print the following output?

3 6 9 12 15

� Answer:
for (int count = 1; count <= 5; count++) {

System.out.print( 3 * count + " ");

}



56Copyright 2006 by Pearson Education

Mapping loops to numbers 2
� Now consider another loop of the same style:

for (int count = 1; count <= 5; count++) {

...

}

� What statement could we write in the body of the loop that 
would make the loop print the following output?

4 7 10 13 16

� Answer:
for (int count = 1; count <= 5; count++) {

System.out.print( 3 * count + 1 + " ");

}



57Copyright 2006 by Pearson Education

Loop number tables
� What statement could we write in the body of the loop 

that would make the loop print the following output?
2 7 12 17 22

� To find the pattern, it can help to make a table of the 
count and the number to print.

� Each time count goes up by 1, the number should go up by 5.

� But count * 5 is too great by 3, so we must subtract 3.

1720174

22

12

7

2

number to print

25

15

10

5

count * 5

225

123

72

21

count * 5 - 3count



58Copyright 2006 by Pearson Education

Loop table question
� What statement could we write in the body of the loop 

that would make the loop print the following output?
17 13 9 5 1

� Let's create the loop table together.
� Each time count goes up 1, the number should ...

� But this multiple is off by a margin of ...

54

1

9

13

17

number to print

5

3

2

1

count

5-1654

1

9

13

17

number to print

-20

-12

-8

-4

count * -4

15

93

132

171

count * -4 + 21count



59Copyright 2006 by Pearson Education

Degenerate loops
� Some loops execute 0 times, because of the nature of 

their test and update.

// a degenerate loop 

for (int i = 10; i < 5; i++) {
System.out.println("How many times do I print?");

}

� Some loops execute endlessly (or far too many times), 
because the loop test never fails.

� A loop that never terminates is called an infinite loop.

for (int i = 10; i >= 1; i++) {

System.out.println("Runaway Java program!!!");

}



60Copyright 2006 by Pearson Education

Nested loops
� nested loop: Loops placed inside one another.

� The inner loop's counter variable must have a different name.

for (int i = 1; i <= 3; i++) {
System.out.println("i = " + i);
for (int j = 1; j <= 2; j++) {

System.out.println("  j = " + j);
}

}

Output:
i = 1

j = 1
j = 2

i = 2
j = 1
j = 2

i = 3
j = 1
j = 2



61Copyright 2006 by Pearson Education

More nested loops
� In this example, all of the statements in the outer loop's 

body are executed 5 times.

� The inner loop prints 10 numbers each of those 5 times, for a 
total of 50 numbers printed.

for (int i = 1; i <= 5; i++) {
for (int j = 1; j <= 10; j++) {

System.out.print((i * j) + " ");
}
System.out.println();  // to end the line

}

Output:
1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50



62Copyright 2006 by Pearson Education

Nested for loop exercise
� What is the output of the following nested for loops?

for (int i = 1; i <= 6; i++) {
for (int j = 1; j <= 10; j++) {

System.out.print("*");
}
System.out.println();

}

� Output:
**********
**********
**********
**********
**********
**********



63Copyright 2006 by Pearson Education

Nested for loop exercise
� What is the output of the following nested for loops?

for (int i = 1; i <= 6; i++) {
for (int j = 1; j <= i; j++) {

System.out.print("*");
}
System.out.println();

}

� Output:
*
**
***
****
*****
******



64Copyright 2006 by Pearson Education

Nested for loop exercise
� What is the output of the following nested for loops?

for (int i = 1; i <= 6; i++) {
for (int j = 1; j <= i; j++) {

System.out.print( i);
}
System.out.println();

}

� Output:
1
22
333
4444
55555
666666



65Copyright 2006 by Pearson Education

Nested for loop exercise
� What nested for loops produce the following output?

1, 1
2, 1
3, 1
1, 2
2, 2
3, 2

� Answer:
for (int y = 1; y <= 2; y++) {

for (int x = 1; x <= 3; x++) {
System.out.println(x + ", " + y);

}
}



66Copyright 2006 by Pearson Education

Nested for loop exercise
� What nested for loops produce the following output?

....1

...2

..3

.4
5

� This is an example of a nested loop problem where we 
build multiple complex lines of output:

� outer "vertical" loop for each of the lines

� inner "horizontal" loop(s) for the patterns within each line

outer loop (loops 5 times because there are 5 lines)

inner loop (repeated characters on each line)



67Copyright 2006 by Pearson Education

� First we write the outer loop, which always goes
from 1 to the number of lines desired:

for (int line = 1; line <= 5; line++) {

...
}

� We notice that each line has the following pattern:
� some number of dots (0 dots on the last line)

� a number

....1

...2

..3

.4
5

Nested for loop exercise



68Copyright 2006 by Pearson Education

� Next we make a table to represent any necessary 
patterns on that line:

....1

...2

..3

.4

5

� Answer:
for (int line = 1; line <= 5; line++) {

for (int j = 1; j <= (-1 * line + 5); j++) {

System.out.print(".");

}

System.out.println( line);

}

Nested for loop exercise

5

4

3

2

1

value displayed

14

0

2

3

4

# of dots

5

3

2

1

line



69Copyright 2006 by Pearson Education

Nested for loop exercise
� A for loop can have more than one loop nested in it.

� What is the output of the following nested for loops?

for (int i = 1; i <= 5; i++) {
for (int j = 1; j <= (5 - i); j++) {

System.out.print(" ");
}
for (int k = 1; k <= i; k++) {

System.out.print(i);
}
System.out.println();

}

� Answer:
1

22
333

4444
55555



70Copyright 2006 by Pearson Education

� Modify the previous code to produce this output:

....1

...2.

..3..

.4...

5....

� Answer:
for (int line = 1; line <= 5; line++) {

for (int j = 1; j <= (-1 * line + 5); j++) {
System.out.print(".");

}
System.out. print(line);
for (int j = 1; j <= (line - 1); j++) {

System.out.print(".");
}
System.out.println();

}

Nested for loop exercise

5

4

3

2

1

value displayed

314

0

2

3

4

# of dots

4

2

1

0

# of dots

5

3

2

1

line



71Copyright 2006 by Pearson Education

Common nested loop bugs
� It is easy to accidentally type the wrong loop variable.

� What is the output of the following nested loops?

for (int i = 1; i <= 10; i++) {

for (int j = 1; i <= 5; j++) {

System.out.print(j);

}

System.out.println();

}

� What is the output of the following nested loops?

for (int i = 1; i <= 10; i++) {

for (int j = 1; j <= 5; i++) {

System.out.print(j);

}

System.out.println();

}



72Copyright 2006 by Pearson Education

How to comment: for loops
� Place a comment on complex loops explaining what they 

do conceptually, not the mechanics of the syntax.
� Bad:

// This loop repeats 10 times, with i from 1 to 10.
for (int i = 1; i <= 10; i++) {

for (int j = 1; j <= 5; j++) { // loop goes 5 times
System.out.print(j); // print the j

}
System.out.println();

}

� Better:
// Prints 12345 ten times on ten separate lines.
for (int i = 1; i <= 10; i++) {

for (int j = 1; j <= 5; j++) {
System.out.print(j);

}
System.out.println(); // end the line of output

}



73Copyright 2006 by Pearson Education

reading: 2.4 - 2.5

Drawing complex figuresDrawing complex figures



74Copyright 2006 by Pearson Education

Drawing complex figures
� Write a program that produces the following output.

� Use nested for loops to capture the repetition.

#================#

|      <><>      |

|    <>....<>    |
|  <>........<>  |

|<>............<>|

|<>............<>|

|  <>........<>  |

|    <>....<>    |
|      <><>      |

#================#



75Copyright 2006 by Pearson Education

Drawing complex figures
� When the task is as complicated as this one, it may help 

to write down steps on paper before we write our code:
� 1. A pseudo-code description of the algorithm (written in English)

� 2. A table of each line's contents, to help see the pattern in the input

#================#

|      <><>      |

|    <>....<>    |

|  <>........<>  |
|<>............<>|

|<>............<>|

|  <>........<>  |

|    <>....<>    |

|      <><>      |
#================#



76Copyright 2006 by Pearson Education

Pseudo-code
� pseudo-code: A written English description of an 

algorithm to solve a programming problem.

� Example: Suppose we are trying to draw a box of stars 
on the screen which is 12 characters wide and 7 tall.

� A possible pseudo-code for this algorithm:

print 12 stars.

for (each of 5 lines) {

print a star.

print 10 spaces.

print a star.

}

print 12 stars.

************
*          *
*          *
*          *
*          *
*          *
************



77Copyright 2006 by Pearson Education

A pseudo-code algorithm
� A possible pseudo-code for our complex figure task:

1. Draw top line with # , 16 =, then #

2. Draw the top half with the following on each line:
|

spaces (decreasing in number as we go downward)

<>

dots (decreasing in number as we go downward)

<>

spaces (same number as above)

|

3. Draw the bottom half, which is the same
as the top half but upside-down

4. Draw bottom line with # , 16 =, then #

� Our pseudo-code suggests we should
use a table to learn the pattern in the
top and bottom halves of the figure.

#================#

|      <><>      |

|    <>....<>    |

|  <>........<>  |
|<>............<>|

|<>............<>|

|  <>........<>  |

|    <>....<>    |

|      <><>      |
#================#



78Copyright 2006 by Pearson Education

Tables to examine output
� A table of the contents of the lines in the "top half" of 

the figure:

� What expressions connect each line with its number of spaces 
and dots?

1204

823

442

061

dotsspacesline

#================#

|      <><>      |

|    <>....<>    |

|  <>........<>  |

|<>............<>|

|<>............<>|

|  <>........<>  |

|    <>....<>    |

|      <><>      |
#================#

0

2

4

6

line * -2 + 8

121204

8823

4442

0061

4 * line - 4dotsspacesline



79Copyright 2006 by Pearson Education

Implementing the figure
� Let's implement the code for this figure together.

� Some questions we should ask ourselves:

� How many loops do we need on each line of the top half of the 
output?

� Which loops are nested inside which
other loops?

� How should we use static methods to 
represent the structure and redundancy
of the output?

#================#

|      <><>      |

|    <>....<>    |

|  <>........<>  |
|<>............<>|

|<>............<>|

|  <>........<>  |

|    <>....<>    |

|      <><>      |
#================#



80Copyright 2006 by Pearson Education

Partial solution

// Prints the expanding pattern of <> for the top h alf of the figure.
public static void drawTopHalf() {

for (int line = 1; line <= 4; line++) {
System.out.print("|");

for (int space = 1; space <= (line * -2 + 8); space++) {
System.out.print(" ");

}

System.out.print("<>");

for (int dot = 1; dot <= (line * 4 - 4); dot++) {
System.out.print(".");

}

System.out.print("<>");

for (int space = 1; space <= (line * -2 + 8); space++) {
System.out.print(" ");

}

System.out.println("|");
}

}



81Copyright 2006 by Pearson Education

reading: 2.4

Scope and class Scope and class 

constantsconstants



82Copyright 2006 by Pearson Education

Variable scope
� scope: The part of a program where a variable exists.

� A variable's scope is from its declaration to the end of the { }
braces in which it was declared.

� If a variable is declared in a for loop, it exists only in that loop.

� If a variable is declared in a method, it exists in that method.

public static void example() {
int x = 3;
for (int i = 1; i <= 10; i++) {

System.out.println(x);
}
// i no longer exists here

} // x ceases to exist here

x's scope

i's scope



83Copyright 2006 by Pearson Education

Scope and using variables
� It is illegal to use a variable outside of its scope.

public static void main(String[] args) {
example();
System.out.println(x);  // illegal

for (int i = 1; i <= 10; i++) {
int y = 5;
System.out.println(y);

}
System.out.println(y);  // illegal

}

public static void example() {
int x = 3;
System.out.println(x);

}



84Copyright 2006 by Pearson Education

Overlapping scope
� It is legal to declare variables with the same name, as 

long as their scopes do not overlap:

public static void main(String[] args) {
int x = 2;

for (int i = 1; i <= 5; i++) {
int y = 5;
System.out.println(y);

}
for ( int i = 3; i <= 5; i++) {

int y = 2;
int x = 4;  // illegal
System.out.println(y);

}
}

public static void anotherMethod() {
int i = 6;
int y = 3;
System.out.println(i + ", " + y);

}



85Copyright 2006 by Pearson Education

Problem: redundant values
� magic number: A value used throughout the program.

� Magic numbers are bad; what if we have to change them?

� A normal variable cannot be used to fix the magic number 
problem, because its scope is not large enough.

public static void main(String[] args) {
int max = 3;
printTop();
printBottom();

}

public static void printTop() {
for (int i = 1; i <= max; i++) {      // ERROR: max not found

for (int j = 1; j <= i; j++) {
System.out.print(j);

}
System.out.println();

}
}

public static void printBottom() {
for (int i = max; i >= 1; i--) {      // ERROR: max not found

for (int j = i; j >= 1; j--) {
System.out.print( max);        // ERROR: max not found

}
System.out.println();

}
}



86Copyright 2006 by Pearson Education

Class constants
� class constant: A named value that can be seen 

throughout the program.

� The value of a constant can only be set when it is declared.

� It can not be changed while the program is running.

� Class constant syntax:
public static final <type> <name> = <value> ;

� Constants' names are usually written in ALL_UPPER_CASE.

� Examples:

public static final int DAYS_IN_WEEK = 7;

public static final double INTEREST_RATE = 3.5;

public static final int SSN = 658234569;



87Copyright 2006 by Pearson Education

Class constant example
� Making the 3 a class constant removes the redundancy:

public static final int MAX_VALUE = 3;

public static void main(String[] args) {
printTop();
printBottom();

}

public static void printTop() {
for (int i = 1; i <= MAX_VALUE; i++) {

for (int j = 1; j <= i; j++) {
System.out.print(j);

}
System.out.println();

}
}

public static void printBottom() {
for (int i = MAX_VALUE; i >= 1; i--) {

for (int j = i; j >= 1; j--) {
System.out.print( MAX_VALUE);

}
System.out.println();

}
}



88Copyright 2006 by Pearson Education

Constants and figures
� Consider the task of drawing the following figures:

+/\/\/\/\/\+
|          |
+/\/\/\/\/\+

+/\/\/\/\/\+
|          |
|          |
|          |
|          |
|          |
+/\/\/\/\/\+

� Each figure is strongly tied to the number 5
(or a multiple of 5, such as 10 ...)

� Use a class constant so that these figures will be resizable.



89Copyright 2006 by Pearson Education

Repetitive figure code
� Note the repetition of numbers based on 5 in the code:

public static void drawFigure1() {
drawPlusLine();
drawBarLine();
drawPlusLine();

}

public static void drawPlusLine() {
System.out.print("+");
for (int i = 1; i <= 5; i++) {

System.out.print("/\\");
}
System.out.println("+");

}

public static void drawBarLine() {
System.out.print("|");
for (int i = 1; i <= 10; i++) {

System.out.print(" ");
}
System.out.println("|");

}

� It would be cumbersome to resize the figure.

Output:

+/\/\/\/\/\+
|          |
+/\/\/\/\/\+



90Copyright 2006 by Pearson Education

Fixing our code with constant
� A class constant will fix the "magic number" problem:

public static final int FIGURE_WIDTH = 5;

public static void drawFigure1() {
drawPlusLine();
drawBarLine();
drawPlusLine();

}

public static void drawPlusLine() {
System.out.print("+");
for (int i = 1; i <= FIGURE_WIDTH; i++) {

System.out.print("/\\");
}
System.out.println("+");

}

public static void drawBarLine() {
System.out.print("|");
for (int i = 1; i <= 2 * FIGURE_WIDTH; i++) {

System.out.print(" ");
}
System.out.println("|");

}

Output:

+/\/\/\/\/\+
|          |
+/\/\/\/\/\+



91Copyright 2006 by Pearson Education

Complex figure w/ constant
� Modify the code from the previous slides to use a 

constant so that it can show figures of different sizes.

� The figure originally shown has a size of 4.

#================#

|      <><>      |

|    <>....<>    |

|  <>........<>  |

|<>............<>|
|<>............<>|

|  <>........<>  |

|    <>....<>    |

|      <><>      |

#================#

A figure of size 3:

#============#

|    <><>    |

|  <>....<>  |

|<>........<>|
|<>........<>|

|  <>....<>  |

|    <><>    |

#============#



92Copyright 2006 by Pearson Education

Loop tables and constant
� Let's modify our loop table to take into account SIZE :

#================#
|      <><>      |
|    <>....<>    | #============#
|  <>........<>  | |    <><>    |
|<>............<>|      |  <>....<>  |
|<>............<>|  |<>........<>|
|  <>........<>  |  |<>........<>|
|    <>....<>    |      |  <>....<>  |
|      <><>      |      |    <><>    |
#================#      #============#

3

4

SIZE

1,2,3

1,2,3,4

line

4,2,0

6,4,2,0

-2*line + (2*SIZE)

0,4,80,4,84,2,0

0,4,8,120,4,8,126,4,2,0

4*line - 4dotsspaces



93Copyright 2006 by Pearson Education

Partial solution
public static final int SIZE = 4;

// Prints the expanding pattern of <> for the top h alf of the figure.
public static void drawTopHalf() {

for (int line = 1; line <= SIZE; line++) {
System.out.print("|");

for (int space = 1; space <= (line * -2 + (2 * SIZE)); space++) {
System.out.print(" ");

}

System.out.print("<>");

for (int dot = 1; dot <= (line * 4 - 4); dot++) {
System.out.print(".");

}

System.out.print("<>");

for (int space = 1; space <= (line * -2 + (2 * SIZE)); space++) {
System.out.print(" ");

}

System.out.println("|");
}

}



94Copyright 2006 by Pearson Education

Observations about constant
� Adding a constant often changes the amount added in a 

loop expression.

� Usually the multiplier (slope) is unchanged.

public static final int SIZE = 4;

for (int space = 1; space <= (line * -2 + (2 * SIZE)); space++) {

System.out.print(" ");

}

� The constant doesn't replace every occurrence of the 
original value.

for (int dot = 1; dot <= (line * 4 - 4); dot++) {

System.out.print(".");

}



95Copyright 2006 by Pearson Education

Another complex figure
� Write a program that produces the following output.

� Write nested for loops to capture the repetition.

� Use static methods to capture structure and redundancy.

====+====
#   |   #
#   |   #
#   |   #
====+====
#   |   #
#   |   #
#   |   #
====+====

� After implementing the program, add a constant so that 
the figure can be resized.


