
1Copyright 2006 by Pearson Education

Building Java ProgramsBuilding Java Programs

Chapter 5: Program Logic
and Indefinite Loops

2Copyright 2006 by Pearson Education

Chapter outline
� indefinite loops

� the while loop

� sentinel loops

� generating random numbers with Random objects

� Boolean logic
� boolean expressions and variables

� logical operators

� testing for valid user input

� indefinite loop variations
� the do/while loop

� logical assertions

3Copyright 2006 by Pearson Education

while loopswhile loops

reading: 5.1

4Copyright 2006 by Pearson Education

Definite loops
� definite loop: One that executes a known number of times.

� The for loops we have seen so far are definite loops.

� We often use language like,

� "Repeat these statements N times."

� "For each of these 10 things,"

� Examples:

� Print "hello" 10 times.

� Find all the prime numbers up to an integer n.

� Print each odd number between 5 and 127.

5Copyright 2006 by Pearson Education

Indefinite loops
� indefinite loop: One where it is not obvious in advance

how many times it will execute.
� The while loops in this chapter are indefinite loops.

� We often use language like,

� "Keep looping as long as or while this condition is still true."

� "Don't stop looping until the following happens."

� Examples:

� Prompt the user until they type a non-negative number.

� Print random numbers until a prime number is printed.

� Continue looping while the user has not typed "n" to quit.

6Copyright 2006 by Pearson Education

The while loop statement
� while loop: Executes as long as a condition is true.

� well suited to writing indefinite loops

� while loop, general syntax:
while (<condition>) {

<statement(s)> ;
}

� Example:
int number = 1;

while (number <= 200) {

System.out.print(number + " ");
number = number * 2;

}

� OUTPUT:

1 2 4 8 16 32 64 128

7Copyright 2006 by Pearson Education

While loop flow chart

8Copyright 2006 by Pearson Education

Example while loop
� Finds and prints a number's first factor other than 1:

Scanner console = new Scanner(System.in);
System.out.print("Type a number: ");

int number = console.nextInt();

int factor = 2;

while (number % factor != 0) {

factor++;

}

System.out.println("First factor: " + factor);

� Example log of execution:
Type a number: 91

First factor: 7

9Copyright 2006 by Pearson Education

Equivalence of for,while loops
� Any for loop of the following form:

for (<initialization>; <condition>; <update>) {

<statement(s)>;

}

can be replaced by a while loop of the following form:

<initialization>;

while (<condition>) {

<statement(s)>;

<update>;

}

10Copyright 2006 by Pearson Education

for/while loop example
� What while loop is essentially equivalent to the

following for loop?

for (int i = 1; i <= 10; i++) {

System.out.println(i + " squared = " + (i * i));

}

� ANSWER:
int i = 1;

while (i <= 10) {

System.out.println(i + " squared = " + (i * i));

i++;

}

11Copyright 2006 by Pearson Education

While loop question
� Write a piece of Java code that uses a while loop to

repeatedly prompt the user to type a number until the
user types a non-negative number, then square it.

� Example log of execution:

Type a non-negative integer: -5

Invalid number, try again: -1

Invalid number, try again: -235

Invalid number, try again: -87

Invalid number, try again: 11

11 squared is 121

12Copyright 2006 by Pearson Education

While loop answer
� Solution:

System.out.print("Type a non-negative integer: ");
int number = console.nextInt();

while (number < 0) {
System.out.print("Invalid number, try again: ");
number = console.nextInt();

}

int square = number * number;
System.out.println(number + " squared is " + square) ;

� Notice that number has to be declared outside the loop in order

to remain in scope.

13Copyright 2006 by Pearson Education

While loop question
� Write a method named digitSum that accepts an

integer as a parameter and returns the sum of the digits
of that number.

� digitSum(29107) returns 2+9+1+0+7 or 19

� Assume that the number is non-negative.

� Hint: Use the %operator to extract the last digit of a number.

� If we do this repeatedly, when should we stop?

14Copyright 2006 by Pearson Education

While loop answer
� The following code implements the method:

public static int digitSum(int n) {

int sum = 0;

while (n > 0) {

sum = sum + (n % 10); // add last digit to sum

n = n / 10; // remove last digit

}

return sum;

}

15Copyright 2006 by Pearson Education

Sentinel loopsSentinel loops

reading: 5.1

16Copyright 2006 by Pearson Education

Sentinel values
� sentinel: A special input value that signals the end of

the user's input.

� sentinel loop: Repeats until a sentinel value is seen.

� Example: Write a program that repeatedly prompts the user for
numbers to add until the user types 0, then outputs their sum.

(In this case, 0 is our sentinel value.)

� Example log of execution:

Enter a number (0 to quit): 95
Enter a number (0 to quit): 87

Enter a number (0 to quit): 42

Enter a number (0 to quit): 26

Enter a number (0 to quit): 0

The total was 250

17Copyright 2006 by Pearson Education

Flawed sentinel solution
� What's wrong with this solution?

Scanner console = new Scanner(System.in);

int sum = 0;

int inputNumber = 1; // "dummy value", anything bu t 0

while (inputNumber != 0) {

System.out.print("Enter a number (0 to quit): ");

inputNumber = console.nextInt();

sum += inputNumber;

}

System.out.println("The total was " + sum);

18Copyright 2006 by Pearson Education

A different sentinel value
� Modify your program to use a sentinel value of -1.

� Example log of execution:

Enter a number (-1 to quit): 95
Enter a number (-1 to quit): 87

Enter a number (-1 to quit): 42

Enter a number (-1 to quit): 26

Enter a number (-1 to quit): -1

The total was 250

19Copyright 2006 by Pearson Education

Changing the sentinel value
� To see the problem, change the sentinel's value to -1:

Scanner console = new Scanner(System.in);
int sum = 0;
int inputNumber = 1; // "dummy value", anything but -1

while (inputNumber != -1) {
System.out.print("Enter a number (-1 to quit): ");
inputNumber = console.nextInt();
sum += inputNumber;

}

System.out.println("The total was " + sum);

� Now the solution produces the wrong output. Why?
The total was 249

20Copyright 2006 by Pearson Education

The problem with our code
� Our code uses a pattern like this:

sum = 0.

while (input is not the sentinel) {

prompt for input; read input.

add input to the sum.

}

� On the last pass through the loop, the sentinel value -1
is added to the sum:

prompt for input; read input (-1).

add input (-1) to the sum.

� This is a fencepost problem.

� We want to read N numbers (N is not known ahead of time),
but only sum the first N - 1 of them.

21Copyright 2006 by Pearson Education

A fencepost solution
� We need the code to use a pattern like this:

sum = 0.

prompt for input; read input.

while (input is not the sentinel) {

add input to the sum.

prompt for input; read input.

}

� Sentinel loops often utilize a fencepost-style "loop-and-
a-half" solution by pulling some code out of the loop.

22Copyright 2006 by Pearson Education

Correct code
� This solution produces the correct output:

Scanner console = new Scanner(System.in);

int sum = 0;

System.out.print("Enter a number (-1 to quit): ");

int inputNumber = console.nextInt();

while (inputNumber != -1) {

sum += inputNumber; // moved to top of loop

System.out.print("Enter a number (-1 to quit): ");

inputNumber = console.nextInt();

}

System.out.println("The total was " + sum);

23Copyright 2006 by Pearson Education

Constant with sentinel
� A better solution creates a constant for the sentinel:

public static final int SENTINEL = -1;

� This solution uses the constant:
Scanner console = new Scanner(System.in);
int sum = 0;
System.out.print("Enter a number (" + SENTINEL + " to quit): ");

int inputNumber = console.nextInt();

while (inputNumber != SENTINEL) {
sum += inputNumber;

System.out.print("Enter a number (" + SENTINEL + " to quit): ");

inputNumber = console.nextInt();
}

System.out.println("The total was " + sum);

24Copyright 2006 by Pearson Education

Generating random Generating random

numbersnumbers

reading: 5.1

25Copyright 2006 by Pearson Education

The Random class
� Random objects generate pseudo-random numbers.

� Class Random is found in the java.util package.

import java.util.*;

� Example:

Random rand = new Random();

int randomNumber = rand.nextInt(10);

// randomNumber has a random value between 0 and 9

returns a random real number in the range [0.0, 1.0)nextDouble()

returns a random integer in the range [0, max)

in other words, from 0 through one less than max

nextInt(max)

returns a random integernextInt()

DescriptionMethod name

26Copyright 2006 by Pearson Education

Generating random numbers
� Common usage: to get a random number from 1 to N

� Example: A random integer between 1 and 20, inclusive:

int n = rand.nextInt(20) + 1;

� To get a number in arbitrary range [min, max]:

nextInt(<size of the range>) + <min>

where <size of the range> equals <max> - <min> + 1

� Example: A random integer between 5 and 10 inclusive:

int n = rand.nextInt(6) + 5;

27Copyright 2006 by Pearson Education

Random questions
� Given the following declaration, how would you get:

Random rand = new Random();

� A random number between 0 and 100 inclusive?

� A random number between 1 and 100 inclusive?

� A random number between 4 and 17 inclusive?

28Copyright 2006 by Pearson Education

Random answers
� Given the following declaration, how would you get:

Random rand = new Random();

� A random number between 0 and 100 inclusive?

int random1 = rand.nextInt(101);

� A random number between 1 and 100 inclusive?

int random2 = rand.nextInt(100) + 1;

� A random number between 4 and 17 inclusive?

int random3 = rand.nextInt(14) + 4;

29Copyright 2006 by Pearson Education

Random question
� Write a program that simulates rolling of two six-sided

dice until their combined result comes up as 7.

� Example log of execution:

2 + 4 = 6
3 + 5 = 8

5 + 6 = 11

1 + 1 = 2

4 + 3 = 7
You won after 5 tries!

30Copyright 2006 by Pearson Education

Random answer
// Rolls two dice until a sum of 7 is reached.

import java.util.*;

public class Roll {

public static void main(String[] args) {

Random rand = new Random();

int sum = 0;

int tries = 0;

while (sum != 7) {

int roll1 = rand.nextInt(6) + 1;

int roll2 = rand.nextInt(6) + 1;

sum = roll1 + roll2;

System.out.println(roll1 + " + " + roll2 + " = " + sum);

tries++;

}

System.out.println("You won after " + tries + " trie s!");

}

}

31Copyright 2006 by Pearson Education

Random/while question
� Write a multiplication tutor program. Example log of execution:

This program helps you practice multiplication
by asking you random multiplication questions
with numbers ranging from 1 to 20
and counting how many you solve correctly.

14 * 8 = 112
Correct!
5 * 12 = 60
Correct!
8 * 3 = 24
Correct!
5 * 5 = 25
Correct!
20 * 14 = 280
Correct!
19 * 14 = 256
Incorrect; the answer was 266
You solved 5 correctly.

32Copyright 2006 by Pearson Education

Random/while answer
// Asks the user to do multiplication problems and scores them.
import java.util.*;

public class MultTutor {
public static void main(String[] args) {

introduction();
Scanner console = new Scanner(System.in);
Random rand = new Random();
int num1 = 0;
int num2 = 0;
int guess = 0;
int correct = 0;

// loop until user gets one wrong
while (guess == num1 * num2) {

// pick two random numbers between 1 and 20 inclusi ve
num1 = rand.nextInt(20) + 1;
num2 = rand.nextInt(20) + 1;

System.out.print(num1 + " * " + num2 + " = ");
int guess = console.nextInt();
if (guess == num1 * num2) {

System.out.println("Correct!");
} else {

System.out.println("Incorrect; the answer was " + (num1 * num2));
}

}

System.out.println("You solved " + correct + " corre ctly.");
}

33Copyright 2006 by Pearson Education

Random/while answer 2
...

public static void introduction() {
System.out.println("This program helps you practice multiplication");
System.out.println("by asking you random multiplicat ion questions");
System.out.println("with numbers ranging from 1 to 2 0");
System.out.println("and counting how many you solve correctly.");
System.out.println();

}
}

� Consider changing the code to use a class constant for the

maximum value of 20.

34Copyright 2006 by Pearson Education

Random text and others
� Random can be used in text processing.

� Code to pick a random lowercase letter:

char letter = (char) ('a' + rand.nextInt(26));

� Code to pick a random character from a string
(in this case, a random vowel):
String vowels = "aeiou";
char vow = vowels.charAt(rand.nextInt(vowels.length ());

� Another example: code to pick a random letter representing a
base in a DNA strand (A, C, G, or T):

String bases = "ACGT";

char base = bases.charAt(rand.nextInt(bases.length());

35Copyright 2006 by Pearson Education

Other random values
� Random can be used with double

� nextDouble method returns a double between 0.0 and 1.0

� To get a double in a different range, multiply and/or add

� Example: Gets a random value between 1.5 and 4.0:

double randomGpa = rand.nextDouble() * 2.5 + 1.0;

� Random can be used to pick between arbitrary choices

� Code to pick a red, green, or blue color:
int r = rand.nextInt(3);
if (r == 0) {

g.setColor(Color.RED);
} else if (r == 1) {

g.setColor(Color.GREEN);
} else {

g.setColor(Color.BLUE);
}

36Copyright 2006 by Pearson Education

Boolean logicBoolean logic

reading: 5.2

37Copyright 2006 by Pearson Education

Type boolean
� boolean: A primitive type to represent logical values.

� A boolean expression produces either true or false .

� The <condition>s in if statements, for loops are boolean .

� Examples:

boolean minor = (age < 21);
boolean expensive = (iPhonePrice > 500.00);
boolean iLoveCS = true;

if (minor) {
System.out.println("Can't purchase alcohol!");

}

� You can create boolean variables, pass boolean parameters,
return boolean values from methods, ...

38Copyright 2006 by Pearson Education

Methods that return boolean
� There are methods in Java that return boolean values.

� A call to one of these methods can be used as a <condition>
in a for loop, while loop, or if statement.

� Examples:

Scanner console = new Scanner(System.in);

System.out.print("Type your name: ");

String line = console.nextLine();

if (line.startsWith("Dr.")) {

System.out.println("Will you marry me?");

} else if (line.endsWith(", Esq.")) {

System.out.println("And I am Ted 'Theodore' Logan!") ;

}

39Copyright 2006 by Pearson Education

String boolean methods
� The following String methods return boolean values:

whether one string contains the other's
characters at its start

startsWith(String)

whether one string contains the other's
characters at its end

endsWith(String)

whether two strings contain the same
characters, ignoring upper vs. lower
case differences

equalsIgnoreCase(String)

whether two strings contain exactly the
same characters

equals(String)

DescriptionMethod

40Copyright 2006 by Pearson Education

Writing boolean methods
� Methods can return a boolean result.

public static boolean bothOdd(int n1, int n2) {

if (n1 % 2 != 0 && n2 % 2 != 0) {

return true;

} else {

return false;

}

}

� Calls to such methods can be used as conditions:

if (bothOdd(7, 13)) {

...

}

41Copyright 2006 by Pearson Education

Writing boolean methods 2
� Another example that returns a boolean result:

public static boolean isLowerCaseLetter(char ch) {

if ('a' <= ch && ch <= 'z') {

return true;

} else {

return false;

}

}

� Example call to this method:

String name = "e.e. cummings";

char firstLetter = name.charAt(0);

if (isLowerCaseLetter(firstLetter)) {

System.out.println("You forgot to capitalize your na me!");

}

42Copyright 2006 by Pearson Education

"Boolean Zen"
� Methods that return a boolean result often have an

if/else statement:

public static boolean bothOdd(int n1, int n2) {
if (n1 % 2 != 0 && n2 % 2 != 0) {

return true;
} else {

return false;
}

}

� ... but the if/else is sometimes unnecessary.

� The if/else 's condition is itself a boolean expression;

its value is exactly what you want to return. So do that!

public static boolean bothOdd(int n1, int n2) {
return (n1 % 2 != 0 && n2 % 2 != 0);

}

43Copyright 2006 by Pearson Education

"Boolean Zen" template
� Replace:

public static boolean <name>(<parameters>) {
if (<condition>) {

return true;
} else {

return false;
}

}

� with:

public static boolean <name>(<parameters>) {
return <condition>;

}

44Copyright 2006 by Pearson Education

Boolean practice problems
� Write a method named isVowel that returns whether a

particular character is a vowel (a, e, i, o, or u). Count
only lowercase vowels.

� isVowel('q') returns false

� isVowel('e') returns true

� Write a method named allDigitsOdd that returns

whether every digit of a positive integer is odd.
� allDigitsOdd(19351) returns true

� allDigitsOdd(234) returns false

� Write a method named countVowels that returns the
number of lowercase vowels in a String .

� countVowels("zelda") returns 2

� countVowels("E Pluribus Unum") returns 4

45Copyright 2006 by Pearson Education

Boolean practice solutions
public static boolean isVowel(char c) {

if (c == 'a' || c == 'e' || c == 'i' || c == 'o' || c == 'u') {
return true;

} else {
return false;

}
}

or:
public static boolean isVowel(char c) {

return (c == 'a' || c == 'e' || c == 'i' || c == 'o ' || c == 'u');
}

public static boolean allDigitsOdd(int n) {
while (n > 0) {

if (n % 2 == 0) {
return false;

}
n /= 2;

}
return true;

}

46Copyright 2006 by Pearson Education

Boolean practice solutions
public static int countVowels(String s) {

int count = 0;
for (int i = 0; i < s.length(); i++) {

char c = s.charAt(i);
if (c == 'a' || c == 'e' || c == 'i' || c == 'o' || c == 'u') {

count++;
}

}
return count;

}

or:

public static int countVowels(String s) {
int count = 0;
for (int i = 0; i < s.length(); i++) {

if (isVowel(s.charAt(i))) {
count++;

}
}
return count;

}

47Copyright 2006 by Pearson Education

Boolean question
� Modify your previous multiplication tutor program to use a static

method that returns a boolean value.

This program helps you practice multiplication
by asking you random multiplication questions
with numbers ranging from 1 to 20
and counting how many you solve correctly.

14 * 8 = 112
Correct!
5 * 12 = 60
Correct!
8 * 3 = 24
Correct!
5 * 5 = 25
Correct!
20 * 14 = 280
Correct!
19 * 14 = 256
Incorrect; the answer was 266
You solved 5 correctly.

48Copyright 2006 by Pearson Education

Boolean answer
import java.util.*;

// Asks the user to do multiplication problems and scores them.
public class MultTutor {

public static void main(String[] args) {
introduction();
Scanner console = new Scanner(System.in);
Random rand = new Random();

// loop until user gets one wrong
int correct = 0;
while (askQuestion(console, rand)) {

correct++;
}

System.out.println("You solved " + correct + " corre ctly.");
}

public static void introduction() {
System.out.println("This program helps you practice multiplication");
System.out.println("by asking you random multiplicat ion questions");
System.out.println("with numbers ranging from 1 to 2 0");
System.out.println("and counting how many you solve correctly.");
System.out.println();

}

...

49Copyright 2006 by Pearson Education

Boolean answer 2
...

public static boolean askQuestion(Scanner console, Random rand) {
// pick two random numbers between 1 and 20 inclusi ve
int num1 = rand.nextInt(20) + 1;
int num2 = rand.nextInt(20) + 1;

System.out.print(num1 + " * " + num2 + " = ");
int guess = console.nextInt();
if (guess == num1 * num2) {

System.out.println("Correct!");
return true;

} else {
System.out.println("Incorrect; the correct answer w as " +

(num1 * num2));
return false;

}
}

}

50Copyright 2006 by Pearson Education

Boolean practice problem
� Write a program that compares two words typed by the user to see

whether they "rhyme" (end with the same last two letters) and/or
alliterate (begin with the same letter).

� Use methods with return values to tell whether two words rhyme
and/or alliterate.

� Example logs of execution:
(run #1)
Type two words: car STAR
They rhyme!

(run #2)
Type two words: bare bear
They alliterate!

(run #3)
Type two words: sell shell
They alliterate!
They rhyme!

51Copyright 2006 by Pearson Education

Boolean practice solution
// Determines whether two words rhyme and/or start with the same letter.
import java.util.*;

public class Rhyme {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);

System.out.print("Type two words: ");
String word1 = console.next();
String word2 = console.next();

if (rhyme(word1, word2)) {
System.out.println("They rhyme!");

}

if (alliterate(word1, word2)) {
System.out.println("They alliterate!");

}
}

// Returns true if s1 and s2 end with the same two letters.
public static boolean rhyme(String s1, String s2) {

String endOfWord2 = s2.substring(s2.length() - 2);
return s1.endsWith(endOfWord2);

}

// Returns true if s1 and s2 start with the same le tter.
public static boolean alliterate(String s1, String s 2) {

return s1.startsWith(s2.substring(0, 1));
}

}

52Copyright 2006 by Pearson Education

Boolean practice problem
� Write a program that prompts for a number and tells

whether it is prime, and if not, prints the next prime.
� Example logs of execution: (run #1)

Type a number: 29
29 is prime

(run #2)
Type two numbers: 14
14 is not prime; the next prime after 14 is 17

� As part of your solution, write two methods:
� isPrime : Returns true if the parameter passed is a prime number

� nextPrime : Returns the next prime number whose value is
greater than or equal to the parameter passed. (If the
parameter passed is prime, returns that number.)

53Copyright 2006 by Pearson Education

Boolean practice problem
� Modify your previous program so that it reads two

numbers and tells whether each is prime, or if not,
gives the next prime after them.

� Also report whether the two numbers are relatively prime
(have no common factors).

� Example logs of execution: (run #1)
Type two numbers: 9 16
9 is not prime; the next prime after 9 is 11
16 is not prime; the next prime after 16 is 17
9 and 16 are relatively prime

(run #2)
Type two numbers: 7 21
7 is prime
21 is not prime; the next prime after 21 is 23
7 and 21 are not relatively prime

54Copyright 2006 by Pearson Education

Boolean practice solution
import java.util.*;

public class Primes {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);
System.out.print("Type two numbers: ");
int num1 = console.nextInt();
int num2 = console.nextInt();

primeTest(num1);
primeTest(num2);
if (relativelyPrime(num1, num2)) {

System.out.println(num1 + " and " + num2 + " are re latively prime");
} else {

System.out.println(num1 + " and " + num2 +
" are not relatively prime");

}
}

public static void primeTest(int number) {
if (isPrime(number)) {

System.out.println(number + " is prime");
} else {

System.out.println("the next prime after " + number +
" is " + nextPrime(number));

}
}

public static boolean isPrime(int number) {
return countFactors(number) <= 2;

}
...

55Copyright 2006 by Pearson Education

Boolean practice solution 2
...
public static int nextPrime(int number) {

while (countFactors(number) > 2) {
number++;

}
return number; // number is now prime

}

public static int countFactors(int number) {
int count = 1;
for (int i = 2; i <= number; i++) {

if (number % i == 0) {
count++; // i is a factor

}
}
return count;

}

public static boolean relativelyPrime(int n1, int n2) {
return commonFactors(n1, n2) == 1;

}

// Returns the number of
public static int commonFactors(int n1, int n2) {

int count = 1;
for (int i = 2; i <= Math.min(n1, n2); i++) {

if (n1 % i == 0 && n2 % i == 0) {
count++; // i is a common factor

}
}
return count;

}
}

56Copyright 2006 by Pearson Education

Indefinite loop variationsIndefinite loop variations

reading: 5.4

57Copyright 2006 by Pearson Education

The do/while loop
� do/while loop: Executes statements repeatedly while a

condition is true , testing it at the end of each repetition.

� Similar to a while loop, except that its body statement(s) will
always execute the first time, regardless of whether the
condition is true or false .

� The do/while loop, general syntax:
do {

<statement(s)> ;
} while (<condition>);

� Example:

// roll until we get a number other than 3
Random rand = new Random();
int dice;
do {

dice = rand.nextInt();
} while (dice == 3);

58Copyright 2006 by Pearson Education

do/while loop flow chart

59Copyright 2006 by Pearson Education

do/while question
� Modify the previous dice program to use a do/while loop.

� Example log of execution:

2 + 4 = 6

3 + 5 = 8
5 + 6 = 11

1 + 1 = 2

4 + 3 = 7

You won after 5 tries!

60Copyright 2006 by Pearson Education

do/while solution
// Rolls two dice until a sum of 7 is reached.
import java.util.*;

public class Roll {
public static void main(String[] args) {

Random rand = new Random();
int tries = 0;
int sum;
do {

int roll1 = rand.nextInt(6) + 1;
int roll2 = rand.nextInt(6) + 1;
sum = roll1 + roll2;
System.out.println(roll1 + " + " + roll2 + " = " + sum);
tries++;

} while (sum != 7);

System.out.println("You won after " + tries + " trie s!");
}

}

61Copyright 2006 by Pearson Education

"Forever" loop with break
� break statement: Immediately exits a loop.

� Can be used to write a loop whose test is in the middle.

� Such loops are often called "forever" loops because their
header's boolean test is often changed to a trivial true .

� "forever" loop, general syntax:

while (true) {

<statement(s)> ;

if (<condition>) {

break;

}

<statement(s)> ;

}

62Copyright 2006 by Pearson Education

Sentinel loop with break
� A working sentinel loop solution using break :

Scanner console = new Scanner(System.in);

int sum = 0;

while (true) {

System.out.print("Enter a number (-1 to quit): ");

int inputNumber = console.nextInt();

if (inputNumber == -1) { // don't add -1 to sum

break;

}

sum += inputNumber; // inputNumber != -1 here

}

System.out.println("The total was " + sum);

63Copyright 2006 by Pearson Education

AssertionsAssertions

reading: 5.5

64Copyright 2006 by Pearson Education

Logical assertions
� assertion: A statement that is either true or false.

Examples:

� Java was created in 1995.

� The sky is purple.

� 23 is a prime number.

� 10 is greater than 20.

� x divided by 2 equals 7. (depends on the value of x)

65Copyright 2006 by Pearson Education

Assertions in code
� We can make assertions about our code and ask

whether they are true at various points in the code.
� Valid answers are ALWAYS, NEVER, or SOMETIMES.

System.out.print("Type a nonnegative number: ");

double number = console.nextDouble();

// Point A: is number < 0.0 here?

while (number < 0.0) {

// Point B: is number < 0.0 here?

System.out.print("Negative; try again: ");

number = console.nextDouble();
// Point C: is number < 0.0 here?

}

// Point D: is number < 0.0 here?

� We can make assertions about our code and ask
whether they are true at various points in the code.

� Valid answers are ALWAYS, NEVER, or SOMETIMES.

System.out.print("Type a nonnegative number: ");

double number = console.nextDouble();

// Point A: is number < 0.0 here? (SOMETIMES)

while (number < 0.0) {

// Point B: is number < 0.0 here? (ALWAYS)

System.out.print("Negative; try again: ");

number = console.nextDouble();
// Point C: is number < 0.0 here? (SOMETIMES)

}

// Point D: is number < 0.0 here? (NEVER)

66Copyright 2006 by Pearson Education

Assertion example 1
public static int mystery(Scanner console) {

int prev = 0;
int count = 0;
int next = console.nextInt();
// Point A
while (next != 0) {

// Point B
if (next == prev) {

// Point C
count++;

}
prev = next;
next = console.nextInt();
// Point D

}
// Point E
return count;

}

Point E

Point D

Point C

Point B

Point A

next == prevprev == 0next == 0

Which of the following assertions are true
at which point(s) in the code?
Choose ALWAYS, NEVER, or SOMETIMES.

Point E

Point D

Point C

Point B

Point A

SOMETIMESSOMETIMESALWAYS

SOMETIMESNEVERSOMETIMES

ALWAYSNEVERNEVER

SOMETIMESSOMETIMESNEVER

SOMETIMESALWAYSSOMETIMES

next == prevprev == 0next == 0

67Copyright 2006 by Pearson Education

Assertion example 2
public static void mystery(int x, int y) {

int z = 0;

// Point A
while (x >= y) {

// Point B
x -= y;

// Point C
z++;

// Point D
}

// Point E
System.out.println(

z + " " + x);
}

Point E

Point D

Point C

Point B

Point A

z == 0x == yx < y

Which of the following assertions are true
at which point(s) in the code?
Choose ALWAYS, NEVER, or SOMETIMES.

Point E

Point D

Point C

Point B

Point A

SOMETIMESNEVERALWAYS

NEVERSOMETIMESSOMETIMES

SOMETIMESSOMETIMESSOMETIMES

SOMETIMESSOMETIMESNEVER

ALWAYSSOMETIMESSOMETIMES

z == 0x == yx < y

68Copyright 2006 by Pearson Education

Assertion example 3
// pre : y >= 0, post: returns x^y
public static int pow(int x, int y) {

int prod = 1;

// Point A
while (y > 0) {

// Point B
if (y % 2 == 0) {

// Point C
x *= x;
y /= 2;

// Point D
} else {

// Point E
prod *= x;
y--;
// Point F

}
// Point G

}
// Point H
return prod;

}

Point E

Point F

Point G

Point H

Point D

Point C

Point B

Point A

y % 2 == 0y == 0

Which of the following assertions are true
at which point(s) in the code?
Choose ALWAYS, NEVER, or SOMETIMES.

NEVERNEVERPoint E

ALWAYSSOMETIMESPoint F

SOMETIMESSOMETIMESPoint G

Point H

Point D

Point C

Point B

Point A

ALWAYSALWAYS

SOMETIMESNEVER

ALWAYSNEVER

SOMETIMESNEVER

SOMETIMESSOMETIMES

y % 2 == 0y == 0

