
1Copyright 2006 by Pearson Education

Building Java ProgramsBuilding Java Programs

Chapter 8:
Classes and Objects

2Copyright 2006 by Pearson Education

Chapter outline
� objects, classes, and object-oriented programming

� relationship between classes and objects

� abstraction

� anatomy of a class

� fields

� instance methods

� constructors

� encapsulation

� advanced classes

� preconditions, postconditions, and invariants

� special methods: toString and equals

� the keyword this

3Copyright 2006 by Pearson Education

Objects, classes, and types
� object: An entity that combines state and behavior.

� object-oriented programming (OOP): Writing programs that
perform most of their behavior as interactions between objects.

� class: 1. A program. or,
2. A category / type of objects.

� classes we've used so far:

String , Point , Scanner , DrawingPanel , Graphics , Color ,
Random, File , PrintStream

� We can write classes to define new types of objects.

� Why would we want to do this?

4Copyright 2006 by Pearson Education

Abstraction
� abstraction: A distancing between ideas and details.

� Objects in Java provide abstraction:
We can use them without knowing how they work.

� You use abstraction every day.
Example: Your portable music player.

� You understand its external behavior (buttons, screen, etc.)

� You don't understand its inner details (and you don't need to).

5Copyright 2006 by Pearson Education

Blueprint analogy
� A single blueprint can be used to create many similar objects.

Music player blueprint

state:
current song
volume
battery life

behavior:
power on/off
change station/song
change volume
choose random song

Music player #1

state:
song = "Thriller"
volume = 17
battery life = 2.5 hrs

behavior:
power on/off
change station/song
change volume
choose random song

Music player #2

state:
song = "Sandstorm"
volume = 9
battery life = 3.41 hrs

behavior:
power on/off
change station/song
change volume
choose random song

Music player #3

state:
song = "Code Monkey"
volume = 24
battery life = 1.8 hrs

behavior:
power on/off
change station/song
change volume
choose random song

creates

6Copyright 2006 by Pearson Education

Recall: Point objects
Point p1 = new Point(5, -2);

Point p2 = new Point();

� State (data) of each Point object:

� Behavior (methods) of each Point object:

how far away the point is from point pdistance(p)

adjusts the point's x and y by the given amountstranslate(dx, dy)

sets the point's x and y to the given valuessetLocation(x, y)

DescriptionMethod name

the point's y-coordinatey

the point's x-coordinatex

DescriptionField name

7Copyright 2006 by Pearson Education

A Point class
� The class (blueprint) knows how to create objects.
� Each object contains its own data and methods.

Point class

state:
int x, y

behavior:
distance(Point p)
equals(Point p)
setLocation(int x, int y)
toString()
translate(int dx, int dy)

Point object #1

state:
x = 5, y = -2

behavior:
distance(Point p)
equals(Point p)
setLocation(int x, int y)
toString()
translate(int dx, int dy)

Point object #2

state:
x = -245, y = 1897

behavior:
distance(Point p)
equals(Point p)
setLocation(int x, int y)
toString()
translate(int dx, int dy)

Point object #3

state:
x = 18, y = 42

behavior:
distance(Point p)
equals(Point p)
setLocation(int x, int y)
toString()
translate(int dx, int dy)

8Copyright 2006 by Pearson Education

Object state:Object state:

fieldsfields

reading: 8.2

9Copyright 2006 by Pearson Education

Point class, version 1
� The following code creates a new class named Point .

public class Point {

int x;
int y;

}

� Save this code into a file named Point.java .

� Each Point object contains two pieces of data:

� an int named x,

� an int named y.

� Point objects do not contain any behavior (yet).

10Copyright 2006 by Pearson Education

Fields
� field: A variable inside an object that holds part of its state.

� Each object has its own copy of each field we declare.

� Declaring a field, general syntax:
<type> <name> ;

� Examples:

public class Student {

String name; // each Student object has a

double gpa; // name and gpa data field

}

11Copyright 2006 by Pearson Education

Accessing fields
� Code in other classes can access your object's fields.

� Accessing a field, general syntax:

<variable name> . <field name>

� Modifying a field, general syntax:

<variable name> . <field name> = <value> ;

� Examples:
System.out.println("the x-coord is " + p1.x); // access

p2.y = 13; // modify

� Later we'll learn about encapsulation, which will change the way
we access the data inside objects.

12Copyright 2006 by Pearson Education

Client code
� Point.java is not, by itself, a runnable program.

� Classes of objects are modules that can be used by other
programs stored in separate .java files.

� client code: Code that uses a class and its objects.
� The client code is a runnable program with a main method.

PointMain.java (client code)

main(String[] args) {
Point p1 = new Point();
p1.x = 7;
p1.y = 2;

Point p2 = new Point();
p2.x = 4;
p2.y = 3;
...

}

Point.java (class of objects)

public class Point {
int x;
int y;

}

2y7x

3y4x

13Copyright 2006 by Pearson Education

Point client code
� The client code below (PointMain.java) uses our Point class.

public class PointMain {
public static void main(String[] args) {

// create two Point objects
Point p1 = new Point();
p1.y = 2;
Point p2 = new Point();
p2.x = 4;

System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");

// move p2 and then print it
p2.x += 2;
p2.y ++;
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

}
}

OUTPUT:
p1 is (0, 2)
p2 is (6, 1)

14Copyright 2006 by Pearson Education

Client code question
� Write a client program that uses our Point class to
produce the following output:

p1 is (7, 2)
p1's distance from origin = 7.280109889280518
p2 is (4, 3)
p2's distance from origin = 5.0
p1 is (18, 8)
p2 is (5, 10)
distance from p1 to p2 = 13.0

� Recall: distance between two points (x1, y1) and (x2, y2) is:

() ()2
12

2
12 yyxx −+−

15Copyright 2006 by Pearson Education

Client code answer
// This client program uses the Point class.
public class PointMain {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point();
p1.x = 7;
p1.y = 2;
Point p2 = new Point();
p2.x = 4;
p2.y = 3;

System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

// compute/print each point's distance from the ori gin
double dist1 = Math.sqrt(p1.x * p1.x + p1.y * p1.y) ;
double dist2 = Math.sqrt(p2.x * p2.x + p2.y * p2.y) ;
System.out.println("p1's distance from origin = " + dist1);
System.out.println("p2's distance from origin = " + dist2);

// move p1 and p2 and print them again
p1.x += 11;
p1.y += 6;
p2.x += 1;
p2.y += 7;
System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

// compute/print distance from p1 to p2
int dx = p1.x - p2.x;
int dy = p2.y - p2.y;
double distp1p2 = Math.sqrt(dx * dx + dy * dy);
System.out.println("distance from p1 to p2 = " + dis tp1p2);

}
}

16Copyright 2006 by Pearson Education

Object behavior: Object behavior:

methodsmethods

� reading: 8.3

17Copyright 2006 by Pearson Education

Client code redundancy
� Our client program translated a Point object's location:

// move p2 and print it again
p2.x += 2;
p2.y += 4;
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

� To translate several points, the code must be repeated:

p1.x += 11;
p1.y += 6;

p2.x += 2;
p2.y += 4;

p3.x += 1;
p3.y += 7;
...

18Copyright 2006 by Pearson Education

Eliminating redundancy, v1
� We can eliminate the redundancy with a static method:

// Shifts the location of the given point.
public static void translate(Point p, int dx, int dy) {

p.x += dx;
p.y += dy;

}

� main would call the method as follows:

// move p2 and then print it again
translate(p2, 2, 4);
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

� (Why doesn't translate need to return the modified point?)

19Copyright 2006 by Pearson Education

Problems with static solution
� The static method solution isn't a good idea.

� The syntax doesn't match the way we're used to using objects.

translate(p2, 2, 4); // ours (bad)

� If we wrote several client programs that translated Point s, each

would need a copy of the translate method.

� The point of classes is to combine state and behavior.

� The behavior of translate is closely related to the data of the

Point , so it belongs inside each Point object.

p2.translate(2, 4); // Java's (better)

20Copyright 2006 by Pearson Education

Instance methods
� instance method:
One that defines behavior for each object of a class.

� instance method declaration, general syntax:

public <type> <name> (<parameter(s)>) {

<statement(s)> ;

}

(same as with static methods, but without the static keyword)

21Copyright 2006 by Pearson Education

Instance method example
public class Point {

int x;
int y;

// Changes the location of this Point object.
public void translate(int dx, int dy) {

...
}

}

� The translate method no longer accepts the Point p as a

parameter. How does the method know which point to move?

22Copyright 2006 by Pearson Education

� Think of each Point object as having its own copy of the
translate method, which operates on that object's state:

Point p1 = new Point();
p1.x = 7;
p1.y = 2;

Point p2 = new Point();
p2.x = 4;
p2.y = 3;

p1.translate(11, 6);
p2.translate(1, 7);

public void translate(int dx, int dy) {
// this code can see p1's x and y

}

Point object diagrams

2y7x

p1

p2
3y4x

public void translate(int dx, int dy) {
// this code can see p2's x and y

}

23Copyright 2006 by Pearson Education

The implicit parameter
� implicit parameter:

The object on which an instance method is called.

� During the call p1.translate(11, 6); ,

the object referred to by p1 is the implicit parameter.

� During the call p2.translate(1, 7); ,

the object referred to by p2 is the implicit parameter.

� The instance method can refer to that object's fields.

� We say that it executes in the context of a particular object.

� Example: The translate method can refer to x and y,

meaning the x and y fields of the object it was called on.

24Copyright 2006 by Pearson Education

Point class, version 2
public class Point {

int x;

int y;

// Changes the location of this Point object.

public void translate(int dx, int dy) {

x += dx;

y += dy;

}

}

� Now each Point object contains a method named translate

that modifies its x and y fields by the given parameter values.

25Copyright 2006 by Pearson Education

Tracing instance method calls
� What happens when the following calls are made?

p1.translate(11, 6);

p2.translate(1, 7);

public void translate(int dx, int dy) {
x += dx;
y += dy;

}

8y3x

p1

public void translate(int dx, int dy) {
x += dx;
y += dy;

}

3y4x

p2

26Copyright 2006 by Pearson Education

Instance method questions
� Write a method distanceFromOrigin that returns the
distance between a Point and the origin, (0, 0).

Use the following formula:

� Write a method distance that computes the distance
between a Point and another Point parameter.

� Write a method setLocation that changes a Point 's
location to the (x, y) values passed.

� You may want to refactor your Point class to use this method.

� Modify the client code to use these new methods.

() ()2
12

2
12 yyxx −+−

27Copyright 2006 by Pearson Education

Accessors and mutators
Two common categories of instance methods:

� accessor: Provides information about an object.

� The information comes from (or is computed using) the fields.

� Examples: distanceFromOrigin , distance

� mutator: Modifies an object's state.
� Sometimes the change is based on parameters (e.g. dx , dy).

� Examples: translate , setLocation

28Copyright 2006 by Pearson Education

Client code, version 2
public class PointMain2 {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point();
p1.y = 2;
Point p2 = new Point();
p2.x = 4;

System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");

// move p2 and then print it
p2.translate(2, 1);
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

}
}

OUTPUT:
p1 is (0, 2)
p2 is (6, 1)

29Copyright 2006 by Pearson Education

Client code question
� Recall our client program that produces this output:

p1 is (7, 2)
p1's distance from origin = 7.280109889280518
p2 is (4, 3)
p2's distance from origin = 5.0
p1 is (18, 8)
p2 is (5, 10)

� Modify the program to use our new methods.

30Copyright 2006 by Pearson Education

Client code answer
// This client program uses the Point class.
public class PointMain {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point();
p1.setLocation(7, 2);
Point p2 = new Point();
p2.setLocation(4, 3);

// print each point
System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

// compute/print each point's distance from the ori gin
System.out.println("p1's distance from origin = " + p1.distanceFromOrigin());

System.out.println("p2's distance from origin = " + p1.distanceFromOrigin());

// move p1 and p2 and print them again
p1.translate(11, 6);
p2.translate(1, 7);
System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

// compute/print distance from p1 to p2
System.out.println("distance from p1 to p2 = " + p1.distance(p2));

}
}

31Copyright 2006 by Pearson Education

Object initialization: Object initialization:

constructorsconstructors

reading: 8.4

32Copyright 2006 by Pearson Education

Initializing objects
� It is tedious to construct an object and assign values to
all of its data fields one by one.

Point p = new Point();

p.x = 3;

p.y = 8; // tedious

� We'd rather pass the fields' initial values as parameters:

Point p = new Point(3, 8); // better!

� We were able to this with Java's built-in Point class.

33Copyright 2006 by Pearson Education

Constructors

� constructor: Initializes the state of new objects.

� Constructor syntax:

public <type> (<parameter(s)>) {

<statement(s)> ;

}

� A constructor runs when the client uses the new keyword.

� A constructor does not specify a return type;

it implicitly returns the new object being created.

� If a class has no constructor, Java gives it a default constructor

with no parameters that sets all the object's fields to 0.

34Copyright 2006 by Pearson Education

Point class, version 3
public class Point {

int x;
int y;

// Constructs a Point at the given x/y coordinates.
public Point(int initialX, int initialY) {

x = initialX;
y = initialY;

}

public void translate(int dx, int dy) {
x += dx;
y += dy;

}
}

35Copyright 2006 by Pearson Education

Tracing constructor calls
� What happens when the following call is made?

Point p1 = new Point(7, 2);

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

public void translate(int dx, int dy) {
x += dx;
y += dy;

}

yx

p1

36Copyright 2006 by Pearson Education

Client code, version 3
public class PointMain3 {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point(5, 2);
Point p2 = new Point(4, 3);

// print each point
System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

// move p2 and then print it again
p2.translate(2, 4);
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

}
}

OUTPUT:
p1 is (5, 2)
p2 is (4, 3)
p2 is (6, 7)

37Copyright 2006 by Pearson Education

Client code question
� Recall our client program that produces this output:

p1 is (7, 2)
p1's distance from origin = 7.280109889280518

p2 is (4, 3)

p2's distance from origin = 5.0

p1 is (18, 8)
p2 is (5, 10)

distance from p1 to p2 = 13.0

� Modify the program to use our new constructor.

38Copyright 2006 by Pearson Education

Client code answer
// This client program uses the Point class.
public class PointMain {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point(7, 2);
Point p2 = new Point(4, 3);

// print each point
System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

// compute/print each point's distance from the ori gin
System.out.println("p1's distance from origin = " + p1.distanceFromOrigin());

System.out.println("p2's distance from origin = " + p1.distanceFromOrigin());

// move p1 and p2 and print them again
p1.translate(11, 6);
p2.translate(1, 7);
System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

// compute/print distance from p1 to p2
System.out.println("distance from p1 to p2 = " + p1. distance(p2));

}
}

39Copyright 2006 by Pearson Education

State/behavior question
� Write a class named Parent that represents a parent

driving children to an exciting place (e.g. DisneyLand).

� The children ask the parent, "Are we there yet?"

� The parent becomes increasingly annoyed.

� The Parent class has a method named areWeThereYet
that returns a String for the parent's response.

� The first 2 times it is called, return "Just a little farther."

� The next 2 times it is called, return "NO."

� The next time it is called, return "STOP ASKING ME THAT!"

� For all subsequent calls, return "You're grounded."

40Copyright 2006 by Pearson Education

State/behavior answer
public class Parent {

private int calls ; // counts areWeThereYet calls

public Parent(String theName) {
calls = 0;

}

public String areWeThereYet() {
calls++;
if (calls == 1 || calls == 2) {

return "Just a little farther.";
} else if (calls == 3 || calls == 4) {

return "NO.";
} else if (calls == 5) {

return "STOP ASKING ME THAT!";
} else {

return "You're grounded.";
}

}
}

41Copyright 2006 by Pearson Education

EncapsulationEncapsulation

reading: 8.5

42Copyright 2006 by Pearson Education

Encapsulation
� encapsulation:
Hiding implementation details of an object from clients.

� Encapsulation provides abstraction;
we can use objects without knowing how they work.
The object has:

� an external view (its behavior)

� an internal view (the state that accomplishes the behavior)

43Copyright 2006 by Pearson Education

Implementing encapsulation
� Fields can be declared private to indicate that no code
outside their own class can access or change them.

� Declaring a private field, general syntax:

private <type> <name> ;

� Examples:

private int x;

private String name;

� Once fields are private, client code cannot access them:

PointMain.java:11: x has private access in Point

System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");

^

44Copyright 2006 by Pearson Education

Accessors and mutators
� We provide accessor methods to examine their values:

public int getX() {
return x;

}

� This gives clients read-only access to the object's fields.

� If so desired, we can also provide mutator methods:

public void setX(int newX) {
x = newX;

}

� Client code will look more like this:
System.out.println("p1 is (" + p1.getX() + ", " + p1.getY() + ")");

p1.setX(14);

45Copyright 2006 by Pearson Education

Benefits of encapsulation
� Provides abstraction between an object and its clients.

� Protects an object from unwanted access by clients.

� Example: If we write a program to manage users' bank
accounts, we don't want a malicious client program to be able
to arbitrarily change a BankAccount object's balance.

� Allows you to change the class implementation later.
� Example: The Point class could be rewritten

to use polar coordinates (a radius r and an angle
θ from the origin), but the external behavior
and methods could remain the same.

46Copyright 2006 by Pearson Education

Point class, version 4
// A Point object represents an (x, y) location.
public class Point {

private int x;
private int y;

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

public double distanceFromOrigin() {
return Math.sqrt(x * x + y * y);

}

public int getX() {
return x;

}

public int getY() {
return y;

}

public void setLocation(int newX, int newY) {
x = newX;
y = newY;

}

public void translate(int dx, int dy) {
x += dx;
y += dy;

}
}

47Copyright 2006 by Pearson Education

Client code, version 4
public class PointMain4 {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point(5, 2);
Point p2 = new Point(4, 3);

// print each point
System.out.println("p1 is (" + p1.getX() + ", " + p1.getY() + ")");
System.out.println("p2 is (" + p2.getX() + ", " + p2.getY() + ")");

// move p2 and then print it again
p2.translate(2, 4);
System.out.println("p2 is (" + p2.getX() + ", " + p2.getY() + ")");

}
}

OUTPUT:
p1 is (5, 2)
p2 is (4, 3)
p2 is (6, 7)

48Copyright 2006 by Pearson Education

Preconditions, Preconditions,

postconditions, and postconditions, and

invariantsinvariants

reading: 8.6

49Copyright 2006 by Pearson Education

Pre/postconditions
� precondition:
Something assumed to be true when a method is called.

� postcondition:
Something promised to be true when a method exits.

� Pre/postconditions are often documented as comments.

� Example:

// Sets this Point's location to be the given (x, y).
// Precondition: newX >= 0 && newY >= 0
// Postcondition: x >= 0 && y >= 0
public void setLocation(int newX, int newY) {

x = newX;
y = newY;

}

50Copyright 2006 by Pearson Education

Class invariants
� class invariant: An assertion about an object's state
that is true throughout the lifetime of the object.

Examples:

� "No BankAccount object's balance can be negative."

� "The speed of a SpaceShip object must be ≤ 10."

� Let's add an invariant to the Point class:

� "No Point object's x and y coordinates can be negative."

To enforce this invariant, we must prevent clients from:

� constructing a Point object with a negative x or y value

� moving a Point object to a negative (x, y) location

51Copyright 2006 by Pearson Education

Violated preconditions
� What if your precondition is not met?

� Sometimes the client passes an invalid value to your method.

� Example:

Point pt = new Point(5, 17);
Scanner console = new Scanner(System.in);
System.out.print("Type the coordinates: ");
int x = console.nextInt(); // what if the user types
int y = console.nextInt(); // a negative number?
pt.setLocation(x, y);

� How can we prevent the client from misusing our object?

52Copyright 2006 by Pearson Education

Dealing with violations
Ways to deal with violated preconditions:

� Return out of the method if negative values are found.

Drawbacks:

� It is not possible to do this in the constructor.

� The client doesn't expect this behavior.

� Fails "silently"; client doesn't realize something has gone wrong.

� Have the object throw an exception. (better)

� This will cause the client program to halt.

53Copyright 2006 by Pearson Education

Throwing exceptions
� Throwing an exception, general syntax:

throw new <exception type> ();

or throw new <exception type> (" <message>");

� <message> will be shown on console when program crashes.

� Example:

// Sets this Point's location to be the given (x, y).
// Throws an exception if newX or newY is negative.
// Postcondition: x >= 0 && y >= 0
public void setLocation(int newX, int newY) {

if (newX < 0 || newY < 0) {
throw new IllegalArgumentException();

}

x = newX;
y = newY;

}

54Copyright 2006 by Pearson Education

Encapsulation and invariants

� Ensure that no Point is constructed with negative x or y:

public Point(int initialX, int initialY) {
if (initialX < 0 || initialY < 0) {

throw new IllegalArgumentException();
}

x = initialX;
y = initialY;

}

� Ensure that no Point can be moved to a negative x or y:

public void translate(int dx, int dy) {
if (x + dx < 0 || y + dy < 0) {

throw new IllegalArgumentException();
}

x += dx;
y += dy;

}

55Copyright 2006 by Pearson Education

The The toStringtoString methodmethod

reading: 8.6

56Copyright 2006 by Pearson Education

Printing objects
� By default, Java doesn't know how to print objects:

Point p = new Point(10, 7);
System.out.println("p is " + p); // p is Point@9e8c34

� We can print a better string (but this is cumbersome):

System.out.println("(" + p.x + ", " + p.y + ")");

� We'd like to be able to print the object itself:

// desired behavior
System.out.println("p is " + p); // p is (10, 7)

57Copyright 2006 by Pearson Education

The toString method
� The special method toString :

� Tells Java how to convert your object into a String as needed.

� Is called when an object is printed or concatenated to a String .

Point p1 = new Point(7, 2);

System.out.println("p1 is " + p1);

� If you prefer, you can write the .toString() explicitly.

System.out.println("p1 is " + p1.toString());

� Every class has a toString , even if it isn't in your code.

� The default toString returns the class's name followed by a

hexadecimal (base-16) number:

"Point@9e8c34"

58Copyright 2006 by Pearson Education

toString method syntax
� You can replace the default behavior by defining a

toString method in your class.

public String toString() {

<statement(s) that return an appropriate String> ;

}

� Example:

// Returns a String representing this Point.
public String toString() {

return "(" + x + ", " + y + ")";
}

59Copyright 2006 by Pearson Education

Client code question
� Recall our client program that produces this output:

p1 is (7, 2)
p1's distance from origin = 7.280109889280518

p2 is (4, 3)

p2's distance from origin = 5.0

p1 is (18, 8)
p2 is (5, 10)

distance from p1 to p2 = 13.0

� Modify the program to use our new toString method.

60Copyright 2006 by Pearson Education

Client code answer
// This client program uses the Point class.
public class PointMain {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point(7, 2);
Point p2 = new Point(4, 3);

// print each point
System.out.println("p1 is " + p1);
System.out.println("p2 is " + p2);

// compute/print each point's distance from the ori gin
System.out.println("p1's distance from origin = " + p1.distanceFromOrigin());

System.out.println("p2's distance from origin = " + p1.distanceFromOrigin());

// move p1 and p2 and print them again
p1.translate(11, 6);
p2.translate(1, 7);
System.out.println("p1 is " + p1);
System.out.println("p2 is " + p2);

// compute/print distance from p1 to p2
System.out.println("distance from p1 to p2 = " + p1. distance(p2));

}
}

61Copyright 2006 by Pearson Education

The The equalsequals methodmethod

reading: 8.6

62Copyright 2006 by Pearson Education

Recall: comparing objects
� The == operator does not work well with objects.

� == compares references to objects, not their state.

� Example:

Point p1 = new Point(5, 3);
Point p2 = new Point(5, 3);
if (p1 == p2) { // false

System.out.println("equal");
}

...

3y5x
p1

p2

...

3y5x

63Copyright 2006 by Pearson Education

The equals method
� The equals method compares the state of objects.

� The default equals behavior acts just like the == operator.

if (p1.equals(p2)) { // false

System.out.println("equal");
}

� We can change this behavior by writing an equals method.

� The method should compare the state of the two objects and

return true for cases like the above.

64Copyright 2006 by Pearson Education

Initial flawed equals method
� A flawed implementation of the equals method:

public boolean equals(Point other) {
if (x == other.x && y == other.y) {

return true;
} else {

return false;
}

}

65Copyright 2006 by Pearson Education

Flaws in equals method
� The body can be shortened to the following:

// boolean zen

return x == other.x && y == other.y;

� It should be legal to compare a Point to any object
(not just other Point objects):

// this should be allowed
Point p = new Point(7, 2);
if (p.equals("hello")) { // false

...

� equals should always return false if a non-Point is passed.

66Copyright 2006 by Pearson Education

equals and the Object class
� equals method, general syntax:

public boolean equals(Object <name>) {

<statement(s) that return a boolean value> ;

}

� The parameter to equals must be of type Object .

� Object is a general type that can match any object.

� Having an Object parameter means any object can be passed.

(We'll learn more about the Object class in Chapter 9.)

67Copyright 2006 by Pearson Education

Another flawed version
� Another flawed equals implementation:

public boolean equals(Object o) {
return (x == o.x && y == o.y);

}

� It does not compile:

Point.java:36: cannot find symbol
symbol : variable x
location: class java.lang.Object
return (x == o.x && y == o.y);

^

� The compiler is saying,

"o could be any object. Not every object has an x field."

68Copyright 2006 by Pearson Education

Type-casting objects
� Solution: Type-cast the object parameter to a Point .

public boolean equals(Object o) {
Point other = (Point) o;
return x == other.x && y == other.y;

}

� Casting objects is different than casting primitives.

� We're really casting an Object reference into a Point reference.

� We're promising the compiler that o refers to a Point object.

69Copyright 2006 by Pearson Education

Casting objects diagram
� Client code:

Point p1 = new Point(5, 3);
Point p2 = new Point(5, 3);
if (p1.equals(p2)) {

System.out.println("equal");
}

public boolean equals(Object o) {
Point other = (Point) o;
return x == other.x && y == other.y;

}

3y5x

p1

p2

...

3y5x

o

other

70Copyright 2006 by Pearson Education

Comparing different types
� When we compare Point objects to other types:

Point p = new Point(7, 2);
if (p.equals("hello")) { // should be false

...
}

� Currently the code crashes:

Exception in thread "main"
java.lang.ClassCastException: java.lang.String

at Point.equals(Point.java:25)
at PointMain.main(PointMain.java:25)

� The culprit is the line with the type-cast:

public boolean equals(Object o) {
Point other = (Point) o;

71Copyright 2006 by Pearson Education

The instanceof keyword
� We can use a keyword called instanceof to ask

whether a variable refers to an object of a given type.

� The instanceof keyword, general syntax:

<variable> instanceof <type>

� The above is a boolean expression.

� Examples:
String s = "hello";
Point p = new Point();

falsenull instanceof String

falsep instanceof String

truep instanceof Point

trues instanceof String

falses instanceof Point

resultexpression

72Copyright 2006 by Pearson Education

Final version of equals method

// Returns whether o refers to a Point object with
// the same (x, y) coordinates as this Point object .
public boolean equals(Object o) {

if (o instanceof Point) {
// o is a Point; cast and compare it
Point other = (Point) o;
return x == other.x && y == other.y;

} else {
// o is not a Point; cannot be equal
return false;

}
}

� This version correctly compares Point s to any type of object.

73Copyright 2006 by Pearson Education

The keyword The keyword thisthis

reading: 8.7

74Copyright 2006 by Pearson Education

Using the keyword this
� this : A reference to the implicit parameter.

� implicit parameter: object on which a method/constructor is called

� this keyword, general syntax:

� To refer to a field:

this. <field name>

� To call a method:

this. <method name>(<parameters>);

� To call a constructor from another constructor:

this(<parameters>);

75Copyright 2006 by Pearson Education

Variable names and scope
� Usually it is illegal to have two variables in the same
scope with the same name.

� Recall: Point class's setLocation method:
� Params named newX and newY to be distinct from fields x and y

public class Point {
int x;
int y;
...
public void setLocation(int newX, int newY) {

if (newX < 0 || newY < 0) {
throw new IllegalArgumentException();

}
x = newX;
y = newY;

}
}

76Copyright 2006 by Pearson Education

Variable shadowing
� However, a class's method can have a parameter whose
name is the same as one of the class's fields.

� Example:

// this is legal
public void setLocation(int x , int y) {

...
}

� Fields x and y are shadowed by parameters with same names.

� Any setLocation code that refers to x or y will use the
parameter, not the field.

� shadowed variable: A field that is "covered up" by a
parameter or local variable with the same name.

77Copyright 2006 by Pearson Education

Avoiding shadowing with this
� The keyword this prevents shadowing:

public class Point {
private int x ;
private int y ;

...

public void setLocation(int x , int y) {
if (x < 0 || y < 0) {

throw new IllegalArgumentException();
}
this.x = x;
this.y = y;

}
}

Inside the setLocation method:

� When this.x is seen, the field x is used.

� When x is seen, the parameter x is used.

78Copyright 2006 by Pearson Education

Multiple constructors
� It is legal to have more than one constructor in a class.

� The constructors must accept different parameters.

public class Point {
private int x;
private int y;

public Point() {
x = 0;
y = 0;

}

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

...
}

79Copyright 2006 by Pearson Education

Multiple constructors w/ this
� One constructor can call another using this

� We can also rename the parameters and use this. field syntax.

public class Point {
private int x;
private int y;

public Point() {
this(0, 0); // calls the (x, y) constructor

}

public Point(int x , int y) {
this.x = x;
this.y = y;

}

...
}

80Copyright 2006 by Pearson Education

Static fields / methodsStatic fields / methods

81Copyright 2006 by Pearson Education

Static fields vs. fields
� static: Part of a class, rather than part of an object.

� Classes can have static fields.

� Unlike fields, static fields are not replicated into each object;
instead a single field is shared by all objects of that class.

� static field, general syntax:

private static <type> <name>;

or,

private static <type> <name> = <value>;

� Example:

private static int count = 0;

82Copyright 2006 by Pearson Education

Static field example
� Count the number of Husky objects created:

public class Husky implements Critter {

// count of Huskies created so far
private static int objectCount = 0;

private int number; // each Husky has a number

public Husky() {
objectCount++;
number = objectCount;

}

...

public String toString() {
return "I am Husky #" + number +

"out of " + objectCount ;
}

}

83Copyright 2006 by Pearson Education

Static methods
� static method: One that's part of a class, not part of an object.

� good places to put code related to a class, but not directly
related to each object's state

� shared by all objects of that class

� does not understand the implicit parameter;
therefore, cannot access fields directly

� if public , can be called from inside or outside the class

� Declaration syntax: (same as we have seen before)

public static <return type> <name>(<params>) {

<statements>;

}

84Copyright 2006 by Pearson Education

Static method example 1
� Java's built-in Math class has code that looks like this:

public class Math {
...

public static int abs(int a) {
if (a >= 0) {

return a;
} else {

return -a;
}

}

public static int max(int a, int b) {
if (a >= b) {

return a;
} else {

return b;
}

}
}

85Copyright 2006 by Pearson Education

Static method example 2
� Adding a static method to our Point class:

public class Point {
...

// Converts a String such as "(5, -2)" to a Point.
// Pre: s must be in valid format.

public static Point parse(String s) {
s = s.substring(1, s.length() - 1); // "5, -2"
s = s.replaceAll(",", ""); // "5 -2"

// break apart the tokens, convert to ints
Scanner scan = new Scanner(s);
int x = scan.nextInt(); // 5
int y = scan.nextInt(); // 2

Point p = new Point(x, y);
return p;

}
}

86Copyright 2006 by Pearson Education

Calling static methods, outside
� Static method call syntax (outside the class):

<class name>. <method name>(<values>);

� This is the syntax client code uses to call a static method.

� Examples:

int absVal = Math.max(5, 7) ;

Point p3 = Point.parse("(-17, 52)") ;

87Copyright 2006 by Pearson Education

Calling static methods, inside
� Static method call syntax (inside the class):

<method name>(<values>);

� This is the syntax the class uses to call its own static method.

� Example:

public class Math {

// other methods such as ceil, floor, abs, etc.
// ...

public static int round(double d) {
if (d - (int) d >= 0.5) {

return ceil(d) ;
} else {

return floor(d) ;
}

}
}

88Copyright 2006 by Pearson Education

More class problemsMore class problems

89Copyright 2006 by Pearson Education

Object practice problem
� Create a class named Circle .

� A circle is represented by a point for its center,
and its radius.

� Make it possible to construct the unit circle,
centered at (0, 0) with radius 1, by passing
no parameters to the constructor.

� Circles should be able to tell whether a given point is contained
inside them.

� Circles should be able to draw themselves using a Graphics.

� Circles should be able to be printed on the console, and should
be able to be compared to other circles for equality.

90Copyright 2006 by Pearson Education

Object practice problem
� Create a class named LineSegment .

� A line segment is represented by
two endpoints (x1, y1) and (x2, y2).

� A line segment should be able to compute
its slope (y2-y1) / (x2-x1).

� A line segment should be able to tell whether a given point
intersects it.

� Line segments should be able to draw themselves using a
Graphics object.

� Line segments should be able to be printed on the console, and
should be able to be compared to other lines for equality.

91Copyright 2006 by Pearson Education

Object practice problem
� Create a class named Calculator .

� A calculator has a method to add digits to a
running total.

� The user can also press operator keys such
as + or * and then enter digits of a second
number.

� When the user presses the = button, the
calculator computes the result based on the numbers entered so
far and the operator chosen. The user can then make further
computations.

92Copyright 2006 by Pearson Education

Calculator client code
� Use your Calculator with a client such as the following:

public class CalculatorMain {
public static void main(String[] args) {

Calculator calc = new Calculator();

// first computation: calculate 329 + 1748 = 2077
calc.addDigit(3);
calc.addDigit(2);
calc.addDigit(9);

calc.setOperator("+");

calc.addDigit(1);
calc.addDigit(7);
calc.addDigit(4);
calc.addDigit(8);

int result = calc.compute();

System.out.println(calc);
System.out.println("result = " + result);

}
}

