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Chapter outline
� objects, classes, and object-oriented programming

� relationship between classes and objects

� abstraction

� anatomy of a class

� fields

� instance methods

� constructors

� encapsulation

� advanced classes

� preconditions, postconditions, and invariants

� special methods: toString and equals

� the keyword this
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Objects, classes, and types
� object: An entity that combines state and behavior.

� object-oriented programming (OOP): Writing programs that 
perform most of their behavior as interactions between objects.

� class: 1. A program.    or,
2. A category / type of objects.

� classes we've used so far:

String , Point , Scanner , DrawingPanel , Graphics , Color , 
Random, File , PrintStream

� We can write classes to define new types of objects.

� Why would we want to do this?
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Abstraction
� abstraction: A distancing between ideas and details.

� Objects in Java provide abstraction:
We can use them without knowing how they work.

� You use abstraction every day.
Example: Your portable music player.

� You understand its external behavior (buttons, screen, etc.)

� You don't understand its inner details (and you don't need to).
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Blueprint analogy
� A single blueprint can be used to create many similar objects.

Music player blueprint

state:
current song
volume
battery life

behavior:
power on/off
change station/song
change volume
choose random song

Music player #1

state:
song = "Thriller"
volume = 17
battery life = 2.5 hrs

behavior:
power on/off
change station/song
change volume
choose random song

Music player #2

state:
song = "Sandstorm"
volume = 9
battery life = 3.41 hrs

behavior:
power on/off
change station/song
change volume
choose random song

Music player #3

state:
song = "Code Monkey"
volume = 24
battery life = 1.8 hrs

behavior:
power on/off
change station/song
change volume
choose random song

creates
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Recall: Point objects
Point p1 = new Point(5, -2);

Point p2 = new Point();

� State (data) of each Point object:

� Behavior (methods) of each Point object:

how far away the point is from point pdistance( p)

adjusts the point's x and y by the given amountstranslate( dx, dy)

sets the point's x and y to the given valuessetLocation( x, y)

DescriptionMethod name

the point's y-coordinatey

the point's x-coordinatex

DescriptionField name
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A Point class
� The class (blueprint) knows how to create objects.
� Each object contains its own data and methods.

Point class

state:
int x, y

behavior:
distance(Point p)
equals(Point p)
setLocation(int x, int y)
toString()
translate(int dx, int dy)

Point object #1

state:
x = 5, y = -2

behavior:
distance(Point p)
equals(Point p)
setLocation(int x, int y)
toString()
translate(int dx, int dy)

Point object #2

state:
x = -245, y = 1897

behavior:
distance(Point p)
equals(Point p)
setLocation(int x, int y)
toString()
translate(int dx, int dy)

Point object #3

state:
x = 18, y = 42

behavior:
distance(Point p)
equals(Point p)
setLocation(int x, int y)
toString()
translate(int dx, int dy)
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Object state:Object state:

fieldsfields

reading: 8.2
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Point class, version 1
� The following code creates a new class named Point .

public class Point {

int x;
int y;

}

� Save this code into a file named Point.java .

� Each Point object contains two pieces of data:

� an int named x,

� an int named y.

� Point objects do not contain any behavior (yet).
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Fields
� field: A variable inside an object that holds part of its state.

� Each object has its own copy of each field we declare.

� Declaring a field, general syntax:
<type> <name> ;

� Examples:

public class Student {

String name; // each Student object has a 

double gpa; // name and gpa data field

}
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Accessing fields
� Code in other classes can access your object's fields.

� Accessing a field, general syntax:

<variable name> . <field name> 

� Modifying a field, general syntax:

<variable name> . <field name> = <value> ;

� Examples:
System.out.println("the x-coord is " + p1.x );   // access

p2.y = 13;                                      // modify

� Later we'll learn about encapsulation, which will change the way 
we access the data inside objects.
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Client code
� Point.java is not, by itself, a runnable program.

� Classes of objects are modules that can be used by other 
programs stored in separate .java files.

� client code: Code that uses a class and its objects.
� The client code is a runnable program with a main method.

PointMain.java (client code)

main(String[] args) {
Point p1 = new Point();
p1.x = 7;
p1.y = 2;

Point p2 = new Point();
p2.x = 4;
p2.y = 3;
...

}

Point.java (class of objects)

public class Point {
int x;
int y;

}

2y7x

3y4x
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Point client code
� The client code below (PointMain.java ) uses our Point class.

public class PointMain {
public static void main(String[] args) {

// create two Point objects
Point p1 = new Point();
p1.y = 2;
Point p2 = new Point();
p2.x = 4;

System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");

// move p2 and then print it
p2.x += 2;
p2.y ++;
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")"); 

}
}

OUTPUT:
p1 is (0, 2)
p2 is (6, 1)



14Copyright 2006 by Pearson Education

Client code question
� Write a client program that uses our Point class to 
produce the following output:

p1 is (7, 2)
p1's distance from origin = 7.280109889280518
p2 is (4, 3)
p2's distance from origin = 5.0
p1 is (18, 8)
p2 is (5, 10)
distance from p1 to p2 = 13.0

� Recall: distance between two points (x1, y1) and (x2, y2) is:

( ) ( )2
12

2
12 yyxx −+−
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Client code answer
// This client program uses the Point class.
public class PointMain {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point();
p1.x = 7;
p1.y = 2;
Point p2 = new Point();
p2.x = 4;
p2.y = 3;

System.out.println("p1 is (" + p1.x + ", " + p1.y +  ")");
System.out.println("p2 is (" + p2.x + ", " + p2.y +  ")");

// compute/print each point's distance from the ori gin
double dist1 = Math.sqrt(p1.x * p1.x + p1.y * p1.y) ;
double dist2 = Math.sqrt(p2.x * p2.x + p2.y * p2.y) ;
System.out.println("p1's distance from origin = " +  dist1);
System.out.println("p2's distance from origin = " +  dist2);

// move p1 and p2 and print them again
p1.x += 11;
p1.y += 6;
p2.x += 1;
p2.y += 7;
System.out.println("p1 is (" + p1.x + ", " + p1.y +  ")");
System.out.println("p2 is (" + p2.x + ", " + p2.y +  ")"); 

// compute/print distance from p1 to p2
int dx = p1.x - p2.x;
int dy = p2.y - p2.y;
double distp1p2 = Math.sqrt(dx * dx + dy * dy);
System.out.println("distance from p1 to p2 = " + dis tp1p2);

}
}
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Object behavior: Object behavior: 

methodsmethods

� reading: 8.3



17Copyright 2006 by Pearson Education

Client code redundancy
� Our client program translated a Point object's location:

// move p2 and print it again
p2.x += 2;
p2.y += 4;
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

� To translate several points, the code must be repeated:

p1.x += 11;
p1.y += 6;

p2.x += 2;
p2.y += 4;

p3.x += 1;
p3.y += 7;
...
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Eliminating redundancy, v1
� We can eliminate the redundancy with a static method:

// Shifts the location of the given point.
public static void translate(Point p, int dx, int dy ) {

p.x += dx;
p.y += dy;

}

� main would call the method as follows:

// move p2 and then print it again
translate(p2, 2, 4);
System.out.println("p2 is (" + p2.x + ", " + p2.y +  ")");

� (Why doesn't translate need to return the modified point?)
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Problems with static solution
� The static method solution isn't a good idea.

� The syntax doesn't match the way we're used to using objects.

translate(p2, 2, 4);    // ours   (bad)

� If we wrote several client programs that translated Point s, each  

would need a copy of the translate method.

� The point of classes is to combine state and behavior.

� The behavior of translate is closely related to the data of the 

Point , so it belongs inside each Point object.

p2.translate(2, 4);     // Java's (better)
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Instance methods
� instance method: 
One that defines behavior for each object of a class.

� instance method declaration, general syntax:

public <type> <name> ( <parameter(s)> ) {

<statement(s)> ;

}

(same as with static methods, but without the static keyword) 
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Instance method example
public class Point {

int x;
int y;

// Changes the location of this Point object.
public void translate(int dx, int dy) {

...
}

}

� The translate method no longer accepts the Point p as a 

parameter.  How does the method know which point to move?
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� Think of each Point object as having its own copy of the 
translate method, which operates on that object's state:

Point p1 = new Point();
p1.x = 7;
p1.y = 2;

Point p2 = new Point();
p2.x = 4;
p2.y = 3;

p1.translate(11, 6);
p2.translate(1, 7);

public void translate(int dx, int dy) {
// this code can see p1's x and y

}

Point object diagrams

2y7x

p1

p2
3y4x

public void translate(int dx, int dy) {
// this code can see p2's x and y

}



23Copyright 2006 by Pearson Education

The implicit parameter
� implicit parameter:

The object on which an instance method is called.

� During the call p1.translate(11, 6); , 

the object referred to by p1 is the implicit parameter.

� During the call p2.translate(1, 7); , 

the object referred to by p2 is the implicit parameter.

� The instance method can refer to that object's fields.

� We say that it executes in the context of a particular object.

� Example: The translate method can refer to x and y,

meaning the x and y fields of the object it was called on.
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Point class, version 2
public class Point {

int x;

int y;

// Changes the location of this Point object.

public void translate(int dx, int dy) {

x += dx;

y += dy;

}

}

� Now each Point object contains a method named translate

that modifies its x and y fields by the given parameter values.
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Tracing instance method calls
� What happens when the following calls are made?

p1.translate(11, 6);

p2.translate(1, 7);

public void translate(int dx, int dy) {
x += dx;
y += dy;

}

8y3x

p1

public void translate(int dx, int dy) {
x += dx;
y += dy;

}

3y4x

p2
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Instance method questions
� Write a method distanceFromOrigin that returns the 
distance between a Point and the origin, (0, 0).

Use the following formula:

� Write a method distance that computes the distance 
between a Point and another Point parameter.

� Write a method setLocation that changes a Point 's 
location to the (x, y) values passed.

� You may want to refactor your Point class to use this method.

� Modify the client code to use these new methods.

( ) ( )2
12

2
12 yyxx −+−
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Accessors and mutators
Two common categories of instance methods:

� accessor: Provides information about an object.

� The information comes from (or is computed using) the fields.

� Examples: distanceFromOrigin , distance

� mutator: Modifies an object's state.
� Sometimes the change is based on parameters (e.g. dx , dy ).

� Examples: translate , setLocation
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Client code, version 2
public class PointMain2 {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point();
p1.y = 2;
Point p2 = new Point();
p2.x = 4;

System.out.println("p1 is (" + p1.x + ", " + p1.y +  ")");

// move p2 and then print it
p2.translate(2, 1);
System.out.println("p2 is (" + p2.x + ", " + p2.y +  ")"); 

}
}

OUTPUT:
p1 is (0, 2)
p2 is (6, 1)
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Client code question
� Recall our client program that produces this output:

p1 is (7, 2)
p1's distance from origin = 7.280109889280518
p2 is (4, 3)
p2's distance from origin = 5.0
p1 is (18, 8)
p2 is (5, 10)

� Modify the program to use our new methods.
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Client code answer
// This client program uses the Point class.
public class PointMain {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point();
p1.setLocation(7, 2);
Point p2 = new Point();
p2.setLocation(4, 3);

// print each point
System.out.println("p1 is (" + p1.x + ", " + p1.y +  ")");
System.out.println("p2 is (" + p2.x + ", " + p2.y +  ")");

// compute/print each point's distance from the ori gin
System.out.println("p1's distance from origin = " +  p1.distanceFromOrigin() );

System.out.println("p2's distance from origin = " +  p1.distanceFromOrigin() );

// move p1 and p2 and print them again
p1.translate(11, 6);
p2.translate(1, 7);
System.out.println("p1 is (" + p1.x + ", " + p1.y +  ")");
System.out.println("p2 is (" + p2.x + ", " + p2.y +  ")"); 

// compute/print distance from p1 to p2
System.out.println("distance from p1 to p2 = " + p1.distance(p2) );

}
}
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Object initialization: Object initialization: 

constructorsconstructors

reading: 8.4
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Initializing objects
� It is tedious to construct an object and assign values to 
all of its data fields one by one.

Point p = new Point();

p.x = 3;

p.y = 8;                    // tedious

� We'd rather pass the fields' initial values as parameters:

Point p = new Point( 3, 8 );  // better!

� We were able to this with Java's built-in Point class.
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Constructors

� constructor: Initializes the state of new objects.

� Constructor syntax:

public <type> ( <parameter(s)> ) {

<statement(s)> ;

}

� A constructor runs when the client uses the new keyword.

� A constructor does not specify a return type;

it implicitly returns the new object being created.

� If a class has no constructor, Java gives it a default constructor

with no parameters that sets all the object's fields to 0.
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Point class, version 3
public class Point {

int x;
int y;

// Constructs a Point at the given x/y coordinates.
public Point(int initialX, int initialY) {

x = initialX;
y = initialY;

}

public void translate(int dx, int dy) {
x += dx;
y += dy;

}
}
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Tracing constructor calls
� What happens when the following call is made?

Point p1 = new Point(7, 2);

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

public void translate(int dx, int dy) {
x += dx;
y += dy;

}

yx

p1
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Client code, version 3
public class PointMain3 {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point(5, 2);
Point p2 = new Point(4, 3);

// print each point
System.out.println("p1 is (" + p1.x + ", " + p1.y +  ")");
System.out.println("p2 is (" + p2.x + ", " + p2.y +  ")"); 

// move p2 and then print it again
p2.translate(2, 4);
System.out.println("p2 is (" + p2.x + ", " + p2.y +  ")"); 

}
}

OUTPUT:
p1 is (5, 2)
p2 is (4, 3)
p2 is (6, 7)
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Client code question
� Recall our client program that produces this output:

p1 is (7, 2)
p1's distance from origin = 7.280109889280518

p2 is (4, 3)

p2's distance from origin = 5.0

p1 is (18, 8)
p2 is (5, 10)

distance from p1 to p2 = 13.0

� Modify the program to use our new constructor.



38Copyright 2006 by Pearson Education

Client code answer
// This client program uses the Point class.
public class PointMain {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point(7, 2);
Point p2 = new Point(4, 3);

// print each point
System.out.println("p1 is (" + p1.x + ", " + p1.y +  ")");
System.out.println("p2 is (" + p2.x + ", " + p2.y +  ")");

// compute/print each point's distance from the ori gin
System.out.println("p1's distance from origin = " +  p1.distanceFromOrigin());

System.out.println("p2's distance from origin = " +  p1.distanceFromOrigin());

// move p1 and p2 and print them again
p1.translate(11, 6);
p2.translate(1, 7);
System.out.println("p1 is (" + p1.x + ", " + p1.y +  ")");
System.out.println("p2 is (" + p2.x + ", " + p2.y +  ")"); 

// compute/print distance from p1 to p2
System.out.println("distance from p1 to p2 = " + p1. distance(p2));

}
}
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State/behavior question
� Write a class named Parent that represents a parent 

driving children to an exciting place (e.g. DisneyLand).

� The children ask the parent, "Are we there yet?"

� The parent becomes increasingly annoyed.

� The Parent class has a method named areWeThereYet
that returns a String for the parent's response.

� The first 2 times it is called, return "Just a little farther."

� The next 2 times it is called, return "NO."

� The next time it is called, return "STOP ASKING ME THAT!"

� For all subsequent calls, return "You're grounded."
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State/behavior answer
public class Parent {

private int calls ;   // counts areWeThereYet calls

public Parent(String theName) {
calls = 0;

}

public String areWeThereYet() {
calls++;
if (calls == 1 || calls == 2) {

return "Just a little farther.";
} else if (calls == 3 || calls == 4) {

return "NO.";
} else if (calls == 5) {

return "STOP ASKING ME THAT!";
} else {

return "You're grounded.";
}

}
}
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EncapsulationEncapsulation

reading: 8.5
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Encapsulation
� encapsulation:
Hiding implementation details of an object from clients.

� Encapsulation provides abstraction;
we can use objects without knowing how they work.
The object has:

� an external view (its behavior)

� an internal view (the state that accomplishes the behavior)
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Implementing encapsulation
� Fields can be declared private to indicate that no code 
outside their own class can access or change them.

� Declaring a private field, general syntax:

private <type> <name> ;

� Examples:

private int x;

private String name;

� Once fields are private, client code cannot access them:

PointMain.java:11: x has private access in Point

System.out.println("p1 is (" + p1.x + ", " + p1.y +  ")");

^
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Accessors and mutators
� We provide accessor methods to examine their values:

public int getX() {
return x;

}

� This gives clients read-only access to the object's fields.

� If so desired, we can also provide mutator methods:

public void setX(int newX) {
x = newX;

}

� Client code will look more like this:
System.out.println("p1 is (" + p1.getX() + ", " + p1.getY() + ")");

p1.setX(14);
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Benefits of encapsulation
� Provides abstraction between an object and its clients.

� Protects an object from unwanted access by clients.

� Example: If we write a program to manage users' bank 
accounts, we don't want a malicious client program to be able 
to arbitrarily change a BankAccount object's balance.

� Allows you to change the class implementation later.
� Example: The Point class could be rewritten

to use polar coordinates (a radius r and an angle 
θ from the origin), but the external behavior
and methods could remain the same.
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Point class, version 4
// A Point object represents an (x, y) location.
public class Point {

private int x;
private int y;

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

public double distanceFromOrigin() {
return Math.sqrt(x * x + y * y);

}

public int getX() {
return x;

}

public int getY() {
return y;

}

public void setLocation(int newX, int newY) {
x = newX;
y = newY;

}

public void translate(int dx, int dy) {
x += dx;
y += dy;

}
}



47Copyright 2006 by Pearson Education

Client code, version 4
public class PointMain4 {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point(5, 2);
Point p2 = new Point(4, 3);

// print each point
System.out.println("p1 is (" + p1.getX() + ", " + p1.getY() + ")");
System.out.println("p2 is (" + p2.getX() + ", " + p2.getY() + ")"); 

// move p2 and then print it again
p2.translate(2, 4);
System.out.println("p2 is (" + p2.getX() + ", " + p2.getY() + ")"); 

}
}

OUTPUT:
p1 is (5, 2)
p2 is (4, 3)
p2 is (6, 7)
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Preconditions, Preconditions, 

postconditions, and postconditions, and 

invariantsinvariants

reading: 8.6
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Pre/postconditions
� precondition:
Something assumed to be true when a method is called.

� postcondition:
Something promised to be true when a method exits.

� Pre/postconditions are often documented as comments.

� Example:

// Sets this Point's location to be the given (x, y ).
// Precondition: newX >= 0 && newY >= 0
// Postcondition: x >= 0 && y >= 0
public void setLocation(int newX, int newY) {

x = newX;
y = newY;

}
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Class invariants
� class invariant: An assertion about an object's state 
that is true throughout the lifetime of the object.

Examples:

� "No BankAccount object's balance can be negative."

� "The speed of a SpaceShip object must be ≤ 10."

� Let's add an invariant to the Point class:

� "No Point object's x and y coordinates can be negative."

To enforce this invariant, we must prevent clients from:

� constructing a Point object with a negative x or y value

� moving a Point object to a negative (x, y) location
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Violated preconditions
� What if your precondition is not met?

� Sometimes the client passes an invalid value to your method.

� Example:

Point pt = new Point(5, 17);
Scanner console = new Scanner(System.in);
System.out.print("Type the coordinates: ");
int x = console.nextInt();  // what if the user types
int y = console.nextInt();  // a negative number?
pt.setLocation(x, y);

� How can we prevent the client from misusing our object?
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Dealing with violations
Ways to deal with violated preconditions:

� Return out of the method if negative values are found.

Drawbacks:

� It is not possible to do this in the constructor.

� The client doesn't expect this behavior.

� Fails "silently"; client doesn't realize something has gone wrong.

� Have the object throw an exception.  (better)

� This will cause the client program to halt.
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Throwing exceptions
� Throwing an exception, general syntax:

throw new <exception type> ();

or throw new <exception type> (" <message>");

� <message> will be shown on console when program crashes.

� Example:

// Sets this Point's location to be the given (x, y ).
// Throws an exception if newX or newY is negative.
// Postcondition: x >= 0 && y >= 0
public void setLocation(int newX, int newY) {

if (newX < 0 || newY < 0) {
throw new IllegalArgumentException();

}

x = newX;
y = newY;

}
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Encapsulation and invariants

� Ensure that no Point is constructed with negative x or y:

public Point(int initialX, int initialY) {
if (initialX < 0 || initialY < 0) {

throw new IllegalArgumentException();
}

x = initialX;
y = initialY;

}

� Ensure that no Point can be moved to a negative x or y:

public void translate(int dx, int dy) {
if (x + dx < 0 || y + dy < 0) {

throw new IllegalArgumentException();
}

x += dx;
y += dy;

}
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The The toStringtoString methodmethod

reading: 8.6
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Printing objects
� By default, Java doesn't know how to print objects:

Point p = new Point(10, 7);
System.out.println("p is " + p);  // p is Point@9e8c34

� We can print a better string (but this is cumbersome):

System.out.println("(" + p.x + ", " + p.y + ")");

� We'd like to be able to print the object itself:

// desired behavior
System.out.println("p is " + p);  // p is (10, 7)
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The toString method
� The special method toString :

� Tells Java how to convert your object into a String as needed.

� Is called when an object is printed or concatenated to a String .

Point p1 = new Point(7, 2);

System.out.println("p1 is " + p1);

� If you prefer, you can write the .toString() explicitly.

System.out.println("p1 is " + p1.toString() );

� Every class has a toString , even if it isn't in your code.

� The default toString returns the class's name followed by a 

hexadecimal (base-16) number:

"Point@9e8c34"
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toString method syntax
� You can replace the default behavior by defining a 

toString method in your class.

public String toString() {

<statement(s) that return an appropriate String> ;

}

� Example:

// Returns a String representing this Point.
public String toString() {

return "(" + x + ", " + y + ")";
}
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Client code question
� Recall our client program that produces this output:

p1 is (7, 2)
p1's distance from origin = 7.280109889280518

p2 is (4, 3)

p2's distance from origin = 5.0

p1 is (18, 8)
p2 is (5, 10)

distance from p1 to p2 = 13.0

� Modify the program to use our new toString method.
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Client code answer
// This client program uses the Point class.
public class PointMain {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point(7, 2);
Point p2 = new Point(4, 3);

// print each point
System.out.println("p1 is " + p1);
System.out.println("p2 is " + p2);

// compute/print each point's distance from the ori gin
System.out.println("p1's distance from origin = " +  p1.distanceFromOrigin());

System.out.println("p2's distance from origin = " +  p1.distanceFromOrigin());

// move p1 and p2 and print them again
p1.translate(11, 6);
p2.translate(1, 7);
System.out.println("p1 is " + p1);
System.out.println("p2 is " + p2);

// compute/print distance from p1 to p2
System.out.println("distance from p1 to p2 = " + p1. distance(p2));

}
}
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The The equalsequals methodmethod

reading: 8.6
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Recall: comparing objects
� The == operator does not work well with objects.

� == compares references to objects, not their state.

� Example:

Point p1 = new Point(5, 3);
Point p2 = new Point(5, 3);
if ( p1 == p2 ) {   // false

System.out.println("equal");
}

...

3y5x
p1

p2

...

3y5x
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The equals method
� The equals method compares the state of objects.

� The default equals behavior acts just like the == operator.

if ( p1.equals(p2) ) {   // false

System.out.println("equal");
}

� We can change this behavior by writing an equals method.

� The method should compare the state of the two objects and 

return true for cases like the above.
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Initial flawed equals method
� A flawed implementation of the equals method:

public boolean equals(Point other) {
if (x == other.x && y == other.y) {

return true;
} else {

return false;
}

}
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Flaws in equals method
� The body can be shortened to the following:

// boolean zen

return x == other.x && y == other.y;

� It should be legal to compare a Point to any object
(not just other Point objects):

// this should be allowed
Point p = new Point(7, 2);
if ( p.equals("hello") ) {   // false

...

� equals should always return false if a non-Point is passed.
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equals and the Object class
� equals method, general syntax:

public boolean equals( Object <name>) {

<statement(s) that return a boolean value> ;

}

� The parameter to equals must be of type Object .

� Object is a general type that can match any object.

� Having an Object parameter means any object can be passed.

(We'll learn more about the Object class in Chapter 9.)
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Another flawed version
� Another flawed equals implementation:

public boolean equals(Object o) {
return (x == o.x && y == o.y);

}

� It does not compile:

Point.java:36: cannot find symbol
symbol  : variable x
location: class java.lang.Object
return (x == o.x && y == o.y );

^

� The compiler is saying,

"o could be any object. Not every object has an x field."
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Type-casting objects
� Solution: Type-cast the object parameter to a Point .

public boolean equals(Object o) {
Point other = (Point) o;
return x == other.x && y == other.y;

}

� Casting objects is different than casting primitives.

� We're really casting an Object reference into a Point reference.

� We're promising the compiler that o refers to a Point object.
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Casting objects diagram
� Client code:

Point p1 = new Point(5, 3);
Point p2 = new Point(5, 3);
if ( p1.equals(p2) ) {

System.out.println("equal");
}

public boolean equals(Object o) {
Point other = (Point) o;
return x == other.x && y == other.y;

}

3y5x

p1

p2

...

3y5x

o

other
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Comparing different types
� When we compare Point objects to other types:

Point p = new Point(7, 2);
if ( p.equals("hello") ) {   // should be false

...
}

� Currently the code crashes:

Exception in thread "main"
java.lang.ClassCastException: java.lang.String

at Point.equals(Point.java:25)
at PointMain.main(PointMain.java:25)

� The culprit is the line with the type-cast:

public boolean equals(Object o) {
Point other = (Point) o;
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The instanceof keyword
� We can use a keyword called instanceof to ask 

whether a variable refers to an object of a given type.

� The instanceof keyword, general syntax:

<variable> instanceof <type>

� The above is a boolean expression.

� Examples:
String s = "hello";
Point p = new Point();

falsenull instanceof String

falsep instanceof String

truep instanceof Point

trues instanceof String

falses instanceof Point

resultexpression
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Final version of equals method

// Returns whether o refers to a Point object with 
// the same (x, y) coordinates as this Point object .
public boolean equals(Object o) {

if (o instanceof Point) {
// o is a Point; cast and compare it
Point other = (Point) o;
return x == other.x && y == other.y;

} else {
// o is not a Point; cannot be equal
return false;

}
}

� This version correctly compares Point s to any type of object.
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The keyword The keyword thisthis

reading: 8.7
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Using the keyword this
� this : A reference to the implicit parameter.

� implicit parameter: object on which a method/constructor is called

� this keyword, general syntax:

� To refer to a field:

this. <field name>

� To call a method:

this. <method name>( <parameters>);

� To call a constructor from another constructor:

this( <parameters>);
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Variable names and scope
� Usually it is illegal to have two variables in the same 
scope with the same name.

� Recall: Point class's setLocation method:
� Params named newX and newY to be distinct from fields x and y

public class Point {
int x;
int y;
...
public void setLocation(int newX, int newY) {

if ( newX < 0 || newY < 0) {
throw new IllegalArgumentException();

}
x = newX;
y = newY;

}
}
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Variable shadowing
� However, a class's method can have a parameter whose 
name is the same as one of the class's fields.

� Example:

// this is legal
public void setLocation(int x , int y ) {

...
}

� Fields x and y are shadowed by parameters with same names.

� Any setLocation code that refers to x or y will use the 
parameter, not the field.

� shadowed variable: A field that is "covered up" by a 
parameter or local variable with the same name.
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Avoiding shadowing with this
� The keyword this prevents shadowing:

public class Point {
private int x ;
private int y ;

...

public void setLocation(int x , int y ) {
if ( x < 0 || y < 0) {

throw new IllegalArgumentException();
}
this.x = x;
this.y = y;

}
}

Inside the setLocation method:

� When this.x is seen, the field x is used.

� When x is seen, the parameter x is used.
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Multiple constructors
� It is legal to have more than one constructor in a class.

� The constructors must accept different parameters.

public class Point {
private int x;
private int y;

public Point() {
x = 0;
y = 0;

}

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

...
}



79Copyright 2006 by Pearson Education

Multiple constructors w/ this
� One constructor can call another using this

� We can also rename the parameters and use this. field syntax.

public class Point {
private int x;
private int y;

public Point() {
this(0, 0);   // calls the (x, y) constructor

}

public Point(int x , int y ) {
this.x = x;
this.y = y;

}

...
}
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Static fields / methodsStatic fields / methods
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Static fields vs. fields
� static: Part of a class, rather than part of an object.

� Classes can have static fields.

� Unlike fields, static fields are not replicated into each object; 
instead a single field is shared by all objects of that class.

� static field, general syntax:

private static <type> <name>;

or,

private static <type> <name> = <value>;

� Example:

private static int count = 0;
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Static field example
� Count the number of Husky objects created:

public class Husky implements Critter {

// count of Huskies created so far
private static int objectCount = 0;

private int number;    // each Husky has a number

public Husky() {
objectCount++;
number = objectCount;

}

...

public String toString() {
return "I am Husky #" + number + 

"out of " + objectCount ;
}

}
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Static methods
� static method: One that's part of a class, not part of an object.

� good places to put code related to a class, but not directly 
related to each object's state

� shared by all objects of that class

� does not understand the implicit parameter;  
therefore, cannot access fields directly

� if public , can be called from inside or outside the class

� Declaration syntax:   (same as we have seen before)

public static <return type> <name>( <params>) {

<statements>;

}
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Static method example 1
� Java's built-in Math class has code that looks like this:

public class Math {
...

public static int abs(int a) {
if (a >= 0) {

return a;
} else {

return -a;
}

}

public static int max(int a, int b) {
if (a >= b) {

return a;
} else {

return b;
}

}
}
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Static method example 2
� Adding a static method to our Point class:

public class Point {
...

// Converts a String such as "(5, -2)" to a Point.
// Pre: s must be in valid format.

public static Point parse(String s) {
s = s.substring(1, s.length() - 1); // "5, -2"
s = s.replaceAll(",", "");           // "5 -2"

// break apart the tokens, convert to ints
Scanner scan = new Scanner(s);
int x = scan.nextInt();              // 5
int y = scan.nextInt();              // 2

Point p = new Point(x, y);
return p;

}
}
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Calling static methods, outside
� Static method call syntax (outside the class):

<class name>. <method name>( <values>);

� This is the syntax client code uses to call a static method.

� Examples:

int absVal = Math.max(5, 7) ;

Point p3 = Point.parse("(-17, 52)") ;
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Calling static methods, inside
� Static method call syntax (inside the class):

<method name>( <values>);

� This is the syntax the class uses to call its own static method.

� Example:

public class Math {

// other methods such as ceil, floor, abs, etc.
// ...

public static int round(double d) {
if (d - (int) d >= 0.5) {

return ceil(d) ;
} else {

return floor(d) ;
}

}
}
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More class problemsMore class problems
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Object practice problem
� Create a class named Circle .

� A circle is represented by a point for its center,
and its radius.

� Make it possible to construct the unit circle,
centered at (0, 0) with radius 1, by passing
no parameters to the constructor.

� Circles should be able to tell whether a given point is contained 
inside them.

� Circles should be able to draw themselves using a Graphics.

� Circles should be able to be printed on the console, and should 
be able to be compared to other circles for equality.
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Object practice problem
� Create a class named LineSegment .

� A line segment is represented by
two endpoints (x1, y1) and (x2, y2).

� A line segment should be able to compute 
its slope (y2-y1) / (x2-x1).

� A line segment should be able to tell whether a given point 
intersects it.

� Line segments should be able to draw themselves using a 
Graphics object.

� Line segments should be able to be printed on the console, and 
should be able to be compared to other lines for equality.
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Object practice problem
� Create a class named Calculator .

� A calculator has a method to add digits to a 
running total.

� The user can also press operator keys such 
as + or * and then enter digits of a second
number.

� When the user presses the = button, the 
calculator computes the result based on the numbers entered so 
far and the operator chosen.  The user can then make further 
computations.
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Calculator client code
� Use your Calculator with a client such as the following:

public class CalculatorMain {
public static void main(String[] args) {

Calculator calc = new Calculator();

// first computation: calculate 329 + 1748 = 2077
calc.addDigit(3);
calc.addDigit(2);
calc.addDigit(9);

calc.setOperator("+");

calc.addDigit(1);
calc.addDigit(7);
calc.addDigit(4);
calc.addDigit(8);

int result = calc.compute();

System.out.println(calc);
System.out.println("result = " + result);

}
}


