Chapter 9:

~Inheritance and Interfaces

Copyright 2006 by Pearson Education

—

; Copyright 2006 by Pearson Education 2

—

Chapter outline

= background
« categories of employees
= relationships and hierarchies

= inheritance programming
= Creating subclasses
= overriding behavior
= multiple levels of inheritance
= interacting with the superclass using the super keyword
= inheritance and design

= polymorphism
= "'polymorphism mystery" problems

= interfaces

Copyright 2006 by Pearson Education

The software crisis

= software engineering: The practice of
conceptualizing, designing, developing, documenting,
and testing large-scale computer programs.

= Large-scale projects face many issues:
= getting many programmers to work together
= getting code finished on time
= avoiding redundant code
» finding and fixing bugs
= Maintaining, improving, and reusing existing code

= code reuse: The practice of writing program code once
and using it in many contexts.

—

_ Copyright 2006 by Pearson Education 4

—

Law firm employee analogy

= common rules: hours, vacation time, benefits, regulations, ...
= all employees attend common orientation to learn general rules
=« each employee receives 20-page manual of the common rules

= each subdivision also has specific rules:
=« employee attends a subdivision-specific orientation to learn them
» employee receives a smaller (1-3 page) manual of these rules

= smaller manual adds some rules and also changes some rules from
the large manual ("use the pink form instead of yellow form"...)

Employee
20-page manual

il

Lawyer
2-page manual

Secretary
1-page manual

Marketer
3-page manual

—

~ Copyright 2006 by Pearson Education

T

LegalSecretary
1-page manual

Separating behavior

= Why not just have a 22 page Lawyer manual, a 21-page
Secretary manual, a 23-page Marketer manual, etc.?

= Some advantages of the separate manuals:

= maintenance: If a common rule changes, we'll need to update
only the common manual.

= locality: A person can look at the lawyer manual and quickly
discover all rules that are specific to lawyers.

= Some key ideas from this example:

» It's useful to be able to describe general rules that will apply to
many groups (the 20-page manual).

= It's also useful for a group to specify a smaller set of rules for
itself, including being able to replace rules from the overall set.

N

 Copyright 2006 by Pearson Education 6

s

Is-a relationships, hierarchies

= Is-a relationship: A hierarchical connection where one
category can be treated as a specialized version of
another.
= every marketer is an employee
= every legal secretary is a secretary

= inheritance hierarchy: A set of classes connected by
is-a relationships that can share common code.
« Often drawn as a downward tree of connected boxes or ovals

representing classes:
P]

~ Copyright 2006 by Pearson Education

—

Employee regulations

= Consider the following employee regulations:
« Employees work 40 hours per week.

=« Employees make $40,000 per year, except legal secretaries
who make $5,000 extra per year ($45,000 total), and
marketers who make $10,000 extra per year ($50,000 total).

= Employees have 2 weeks of paid vacation leave per year,
except lawyers who get an extra week (a total of 3).

« Employees should use a yellow form to apply for leave, except
for lawyers who use a pink form.

= Each type of employee has some unique behavior:

= Lawyers know how to sue.

= Marketers know how to advertise.

» Secretaries know how to take dictation.

= Legal secretaries know how to prepare legal documents.

" Copyright 2006 by Pearson Education 8

s

General employee code

Il A class to represent employees in general (20-pa ge manual).
public class Employee {
public int getHours() {

return 40; I/ works 40 hours / week
}
public double getSalary() {
return 40000.0; /1 $40,000.00 / year
}
public int getVacationDays() {
return 10; Il 2 weeks' paid vacation
}
public String getVacationForm() {
return "yellow"; /I use the yellow form
}

= Exercise: Implement class Secretary , based on the previous
employee regulations.

=3}

~_ Copyright 2006 by Pearson Education 9

—

Redundant secretary code

/I A redundant class to represent secretaries.
public class Secretary {
public int getHours() {

return 40; I/ works 40 hours / week
}
public double getSalary() {
return 40000.0; /1 $40,000.00 / year
}
public int getVacationDays() {
return 10; Il 2 weeks' paid vacation
}
public String getVacationForm() {
return "yellow"; /I use the yellow form
}
public void takeDictation(String text) {
System.out.printin("Taking dictation of text: " + te Xt);
}

i}

~_ Copyright 2006 by Pearson Education

—

10

—

—

Desire for code-sharing

= The takeDictation method is the only unique behavior
in the Secretary class.

= We'd like to be able to say the following:

Il A class to represent secretaries.
public class Secretary {
<copy all the contents from Employee class.>

public void takeDictation(String text) {
System.out.printin("Taking dictation of text: " + te Xt);

}

; Copyright 2006 by Pearson Education 11

= inheritance: A way to form new classes based on
existing classes, taking on their attributes/behavior.

= a way to group related classes
= a way to share code between two or more classes

= We say that one class can extend another by absorbing

its state and behavior.
= superclass: The parent class that is being extended.
= subclass: The child class that extends the superclass and

inherits its behavior.
= The subclass receives a copy of every field and method from its

superclass.

" Copyright 2006 by Pearson Education 12

—

Inheritance syntax

= Creating a subclass, general syntax:

public class <name> extends <superclass name> {
= Example:

public class Secretary extends Employee {

}

= By extending Employee , each Secretary object now:

= receives a getHours , getSalary , getVacationDays , and
getVacationForm method automatically

= Can be treated as an Employee by any other code (seen later)

(e.g. a Secretary could be stored in a variable of type
Employee or stored as an element of an Employee[])

—

S — Copyright 2006 by Pearson Education 13

—

Improved secretary code

Il A class to represent secretaries.

public class Secretary extends Employee {
public void takeDictation(String text) {
System.out.printin("Taking dictation of text: " + te Xt);
}
}

= Now we only write the parts unique to each type.

« Secretary inherits getHours , getSalary , getVacationDays
and getVacationForm methods from Employee .

= Secretary adds the takeDictation method.

4

—

; Copyright 2006 by Pearson Education 14

—

Implementing Lawyer

Let's implement a Lawyer class.

= Consider the following employee regulations:
= Lawyers who get an extra week of paid vacation (a total of 3).
= Lawyers use a pink form when applying for vacation leave.
= Lawyers have some unique behavior: they know how to sue.

= The problem: We want lawyers to inherit most of the
behavior of the general employee, but we want to
replace certain parts with new behavior.

—

= P

~ Copyright 2006 by Pearson Education 15

—

Overriding methods

= override: To write a new version of a method in a
subclass that replaces the superclass's version.

= There is no special syntax for overriding.
To override a superclass method, just write a new version of it
in the subclass. This will replace the inherited version.

= Example:

public class Lawyer extends Employee {
I/ overrides getVacationForm method in Employee clas S
public String getVacationForm() {
return "pink";
}

}

= Exercise: Complete the Lawyer class.

—

~ Copyright 2006 by Pearson Education 16

—

m

™

—

Complete Lawyer class

Il A class to represent lawyers.
public class Lawyer extends Employee {
/[overrides getVacationForm from Employee class
public String getVacationForm() {
return "pink";
}

// overrides getVacationDays from Employee class
public int getVacationDays() {

return 15; // 3 weeks vacation
}

public void sue() {
System.out.printin("l'll see you in court!");
}

= Exercise: Now complete the Marketer class. Marketers make
$10,000 extra ($50,000 total) and know how to advertise.

___ Copyright 2006 by Pearson Education

17

Complete Marketer class

/I A class to represent marketers.
public class Marketer extends Employee {
public void advertise() {

System.out.printin("Act now while supplies last!"
}
public double getSalary() {

return 50000.0; // $50,000.00 / year
}

=3}

o — Copyright 2006 by Pearson Education

18

Levels of inheritance

= Deep hierarchies can be created by multiple

levels of subclassing.

=« Example: The legal secretary is the same as a reqular secretary
except for making more money ($45,000) and being able to file

legal briefs.

public class LegalSecretary extends Secretary {

}

=« Exercise: Complete the LegalSecretary class.

—

"7 Copyright 2006 by Pearson Education 19

—

Complete LegalSecretary class

/Il A class to represent legal secretaries.
public class LegalSecretary extends Secretary {
public void fileLegalBriefs() {
System.out.printin("l could file all day!");

}
public double getSalary() {

return 45000.0; /[$45,000.00 / year
}

=3}

o — Copyright 2006 by Pearson Education

20

I e O e

- reading: 9.3

s i —— i

| s
Copyright 2'006.by Pearson Education

Changes to common behavior

= Imagine that a company-wide change occurs that
affects all employees.
Example: Because of inflation, everyone is given a $10,000 raise.

= The base employee salary is now $50,000.
» Legal secretaries now make $55,000.
= Marketers now make $60,000.

= We must modify our code to reflect this policy change.

—

~ Copyright 2006 by Pearson Education 22

—

Modifying the superclass

= This modified Employee class handles the new raise:

Il A class to represent employees in general (20-pa ge manual).
public class Employee {
public int getHours() {

return 40; I/ works 40 hours / week
}
public double getSalary() {

return 50000.0; // $50,000.00 / year
}

}
= What problem now exists in the code?

= The Employee subclasses are now incorrect.

= They have overridden the getSalary ¥ method to return other
values such as 45,000 and 50,000 that need to be changed.

—

"7 Copyright 2006 by Pearson Education 23

—

=2)

-

—

An unsatisfactory solution

public class LegalSecretary extends Secretary {
public double getSalary() {
return 55000.0;

}
}

public class Marketer extends Employee {
public double getSalary() {
return 60000.0;

}

= The employee subtypes' salaries are tied to the overall base
employee salary, but the subclasses' getSalary code does not

reflect this relationship.

- Copyright 2006 by Pearson Education

24

Calling overridden methods

= A subclass can call an overridden method with the
super keyword.

= Calling an overridden method, syntax:

super. <method name> (<parameter(s)>)

= Example:

public class LegalSecretary extends Secretary {
public double getSalary() {
double baseSalary = super.getSalary()
return baseSalary + 5000.0;

}

= Exercise: Modify the Lawyer and Marketer classes to also use
the super keyword.

—

~ Copyright 2006 by Pearson Education

—

25

Improved subclasses

public class Lawyer extends Employee {
public String getVacationForm() {
return "pink";
}

public int getVacationDays() {
return super.getVacationDays() + 5;
}

public void sue() {
System.out.printin("l'll see you in court!");
}

}

public class Marketer extends Employee {
public void advertise() {
System.out.printin("Act now while supplies last!");
}

public double getSalary() {
return super.getSalary() + 10000.0;
}

=2)

-

- Copyright 2006 by Pearson Education

—

26

Inheritance and constructors

= Imagine that we want to give employees more vacation
days the longer they've been with the company.
=« For each year worked, we'll award 2 additional vacation days.

= When an Employee object is constructed, we'll pass in the
number of years the person has been with the company.

= This will require us to modify our Employee class and add some
new state and behavior.

=« Exercise: Make the necessary modifications to the Employee
class.

—

= P

~ Copyright 2006 by Pearson Education 27

—

Modified Employee class

public class Employee {

'}

—

private int years;

public Employee(int years) {
this.years = years;

}

public int getHours() {
return 40;

}

public double getSalary() {
return 50000.0;

}

public int getVacationDays() {
return 10 + 2 * years;

}

public String getVacationForm() {
return "yellow";

}

~_ Copyright 2006 by Pearson Education

28

Problem with constructors

= Now that we've added the constructor to the Employee
class, our subclasses do not compile. The error:

Lawyer.java:2: cannot find symbol
symbol : constructor Employee()
location: class Employee

public class Lawyer extends Employee {
N

= The short explanation: Once we write a constructor (that
requires parameters) in the superclass, we must now write
constructors for our employee subclasses as well.

= The long explanation: (next slide)

—

= P

~ Copyright 2006 by Pearson Education 29

—

The detailed explanation

= Constructors aren't inherited.

= The Employee subclasses don't inherit the
public Employee(int years) constructor.

= Since our subclasses don't have constructors, they receive a
default parameterless constructor that contains the following:

public Lawyer() {
super(); /[calls public Employee() constructor

= But our public Employee(int years) replaces
the default Employee constructor.

= Therefore all the subclasses' default constructors are now trying
to call a non-existent default superclass constructor.

—

= P

~ Copyright 2006 by Pearson Education 30

—

Calling superclass constructor

= Syntax for calling superclass's constructor:
super(<parameter(s)>);

= Example:
public class Lawyer extends Employee {
public Lawyer(int years) {
super(years); // call Employee constructor

}
_

=« The call to the superclass constructor must be the first
statement in the subclass constructor.

s Exercise: Make a similar modification to the Marketer class.

—

; Copyright 2006 by Pearson Education 31

—

—

; Copyright 2006 by Pearson Education 32

—

Modified Marketer class

Il A class to represent marketers.
public class Marketer extends Employee {
public Marketer(int years) {

super(years);

}

public void advertise() {
System.out.printin("Act now while supplies last!");

}

public double getSalary() {
return super.getSalary() + 10000.0;
}

» Exercise: Modify the Secretary subclass to make it compile:

« Secretaries' years of employment are not tracked and they do not
earn extra vacation for them.

» Secretary objects are also constructed without a years parameter.

Modified Secretary class

Il A class to represent secretaries.
public class Secretary extends Employee {
public Secretary() {
super(0);

}

public void takeDictation(String text) {
System.out.printin("Taking dictation of text: " + te Xt);

}

= Note that since the Secretary doesn't require any parameters to its
constructor, the LegalSecretary now compiles without a constructor
(its default constructor calls the parameterless Secretary constructor).

= This isn't the best solution; it isn't that Secretaries work for O
years, it's that they don't receive a bonus. How can we fix it?

—

~ Copyright 2006 by Pearson Education 33

—

Inheritance and fields

= Suppose that we want to give lawyers a $5000 raise for
each year they've been with the company.

= The following modification doesn't work:

public class Lawyer extends Employee {
public Lawyer(int years) {
super(years);
}

public double getSalary() {
return super.getSalary() + 5000 * years;
}

}

= The error is the following:
Lawyer.java:7: years has private access in Employee
return super.getSalary() + 5000 * years;

—

34

~ Copyright 2006 by Pearson Education

—

—

= P

—

Private access limitations

public class Lawyer extends Employee {
public Lawyer(int years) {
super(years);
}

public double getSalary() {
return super.getSalary() + 5000 * years;
}

}

= The error is the following:

Lawyer.java:7: years has private access in Employee
return super.getSalary() + 5000 * years;

N

= Private fields cannot be directly accessed from other
classes, not even subclasses.

= One reason for this is to prevent malicious programmers from
using subclassing to circumvent encapsulation.

= How can we get around this limitation?

~ Copyright 2006 by Pearson Education

35

Improved Employee code

Add an accessor for any field needed by the superclass.

public class Employee {
private int years;

public Employee(int years) {
this.years = years;
}

public int getYears() {
return years;
}

}

public class Lawyer extends Employee {
public Lawyer(int years) {
super(years);

public double getSalary() {
\ return super.getSalary() + 5000 * getYears()

=2)

}

- Copyright 2006 by Pearson Education 36

—

Revisiting Secretary

= The Secretary class currently has a poor solution.

= We set all Secretaries to O years because they do not get a
vacation bonus for their service.

« If we call getYears on a Secretary object, we'll always get 0.

=« This isn't a good solution; what if we wanted to give some other
reward to all employees based on years of service?

= Let's redesign our Employee class a bit to allow for a
better solution.

——a— Copyright 2006 by Pearson Education 37

Improved Employee code

Let's separate the standard 10 vacation days from those
that are awarded based on seniority.

public class Employee {
private int years;

public Employee(int years) {
this.years = years;

}
public int getVacationDays() {

return 10 + getSeniorityBonus()
}

// vacation days given for each year in the company
public int getSeniorityBonus() {

return 2 * years;
}

= How does this help us improve the Secretary ?

; Copyright 2006 by Pearson Education

—

38

Improved Secretary code

The Secretary can selectively override the
getSeniorityBonus method, so that when it runs its
getVacationDays method, it will use this new version as
part of the computation.

= Choosing a method at runtime like this is called dynamic binding.

public class Secretary extends Employee {
public Secretary(int years) {
super(years);

/I Secretaries don't get a bonus for their years of

service.
public int getSeniorityBonus() {
return O;
}
public void takeDictation(String text) {
System.out.printin("Taking dictation of text: " + te Xt);
}

}

—

~ Copyright 2006 by Pearson Education 39

—

| s
Copyright 2006 by Pearson Education

Polymorphism

= polymorphism: The ability for the same code to be
used with several different types of objects, and behave
differently depending on the type of object used.

= A variable of a type T can legally refer to an object of
any subclass of T.

Employee person = new Lawyer(3);
System.out.printin(person.getSalary()); // 65000.0
System.out.printin(person.getVacationForm()); Il pink

= You can call any methods from Employee on the variable
person , but not any methods specific to Lawyer (such as sue).

= Once a method is called on the object, it behaves in its normal
way (as a Lawyer , not as a normal Employee).

———

_ Copyright 2006 by Pearson Education 41

—

Polymorphism + parameters

= You can declare methods to accept superclass types as
parameters, then pass a parameter of any subtype.

public class EmployeeMain {
public static void main(String[] args) {
Lawyer lisa = new Lawyer(3);
Secretary steve = new Secretary(2);
printinfo(lisa);
printinfo(steve);

public static void printinfo(Employee empl) {
System.out.printin("salary ="+ empl.getSalary());
System.out.printin("days =" + empl.getVacationDays(
System.out.printin("form ="+ empl.getVacationForm(
System.out.printin();

}
}
= OUTPUT:
salary = 65000.0

vacation days = 21
vacation form = pink

salary = 50000.0
vacation days = 10
vacation form = yellow

—

~ Copyright 2006 by Pearson Education

—

42

Polymorphism + arrays

= You can declare arrays of superclass types, and store
objects of any subtype as elements.

public class EmployeeMain2 {
public static void main(String[] args) {
Employee[] employees = {new Lawyer(3), new Secretar y(2),
new Marketer(4), new LegalSecretary(1)};

for (inti=0; i < employees.length; i++) {
System.out.printin("salary ="+

employees[i].getSalary());
System.out.printin("vacation days =" +
employeesli].getVacationDays());
\ System.out.printin();
}
}
= OUTPUT:

salary = 65000.0
vacation days = 21

salary = 50000.0
vacation days = 10

salary = 60000.0
vacation days = 18

- salary = 55000.0

__ vacation days =10
- Copyright 2006 by Pearson Education 43

—

Polymorphism problems

= The textbook has several useful exercises to test your
knowledge of polymorphism.

=« Each exercise declares a group of approximately 4 or 5 short
classes with inheritance is-a relationships between them.

= A client program calls methods on objects of each class.
= Your task is to read the code and determine the client's output.

(Example on next slide...)

—

~ Copyright 2006 by Pearson Education 44

—

=2)

-

—

A polymorphism problem

= Assume that the following four classes have been declared:

public class Foo {
public void method1() {
System.out.printin(*foo 1");
}

public void method2() {
System.out.printin(*foo 2");

}

public String toString() {
return "foo";

}

}

public class Bar extends Foo {
public void method2() {
System.out.printin("bar 2");
}

}

(continued on next slide)

- Copyright 2006 by Pearson Education

45

A polymorphism problem

public class Baz extends Foo {
public void method1() {
System.out.printin("baz 1");

}

public String toString() {
return "baz";

}

}

public class Mumble extends Baz {
public void method2() {
System.out.printin("mumble 2");

}
}
= What would be the output of the following client code?
Fool] pity = {new Baz(), new Bar(), new Mumble(), n ew Foo()};
for (int1=0; 1 < pity.length; i++) {
System out.printin(pity[i]);
pity[i].method1();
pity[i].method2();
| } System.out.printin();

"7 Copyright 2006 by Pearson Education 4

—

—

~ Copyright 2006 by Pearson Education

—

Foo

rmethadi
rrethod2
toString

.-il':.

Finding output with diagrams

= One way to determine the output is to diagram each
class and its methods, including their output:
= Add the classes from top (superclass) to bottom (subclass).
= Include any inherited methods and their output.

foo 1
foo 2
foo

Bar

(rmethoct)
methiod2
(tostring)

foo 1
har 2
foo

Baz
method1 haz 1
(rmethoc2) foo 2
toString har
fMumble
(rethoci) haz 1
(tostring) haz

47

Finding output with tables

= Another possible technique for solving these problems is
to make a table of the classes and methods, writing the
output in each square.

method Foo Bar Baz Mumble
methodl foo 1 foo 1 baz 1 baz 1
method?2 foo 2 bar 2 foo 2 mumble 2

toString foo f oo baz baz

—

_ Copyright 2006 by Pearson Education 48

—

Polymorphism answer

Fool] pity = {new Baz(), new Bar(), new Mumble(), n ew Foo()};
for (inti1=0; 1 < pity.length; i++) {

System.out.printin(pity[i]);

pity[i].method1();

pity[i].method2();

System.out.printin();

}

. Tge code produces the following output:
aZ
baz 1
foo 2

foo
foo 1
bar 2

baz
baz 1
mumble 2

foo
foo 1
’ foo 2

-

- Copyright 2006 by Pearson Education

—

49

Another problem

= Assume that the following classes have been declared:
= The order of classes is changed, as well as the client.

= The methods now sometimes call other methods.

public class Lamb extends Ham {
public void b() {
System.out.print("Lamb b ");
}

}

public class Ham {
public void a() {
System.out.print("Ham a ");
b();
}
public void b() {
System.out.print("Ham b ");

}

public String toString() {
return "Ham";

}

}

—

; Copyright 2006 by Pearson Education 50

—

=2)

Another problem 2

public class Spam extends Yam {
public void b() {
System.out.print("Spam b ");
}

}

public class Yam extends Lamb {
public void a() {
System.out.print("Yam a ");
super.a();

}

public String toString() {
return "Yam";
}

}
= What would be the output of the following client code?

Ham([] food = {new Spam(), new Yam(), new Ham(), new Lamb()};
for (inti = 0; i < food.length; i++) {

System.out.printin(food[i]);

food[i].a();

System.out.printin(); // to end the line of output

food[i].b();

System.out.printin(); // to end the line of output

System.out.printin();

}

- e

; Copyright 2006 by Pearson Education

—

51

=3}

The class diagram

= The following diagram depicts the class hierarchy:

" Copyright 2006 by Pearson Education

Ham

al)
b
toString()

le.

Lamb

a()
b
toString()

Zlh

Yam

al
b{)
toString ()

[lk

Spam

a(
b
toString()

52

—

Polymorphism at work

= Notice that Hanls a method calls b. Lamb
overrides b.

= This means that calling a on a Lamb will also have a
new result.

public class Ham {
public void a() {
System.out.print("Ham a ");
b();
}

public void b() {
System.out.print("Ham b ");

}

public String toString() {
return "Ham";

}

}

public class Lamb extends Ham {

=
—

T CopyrighUBdG VR B Rdfcation

53

—

; Copyright 2006 by Pearson Education

—

The table

= Fill out the following table with each class's behavior:

method

Ham

Lamb

Yam

Spam

toString

54

=2)

- e

; Copyright 2006 by Pearson Education

—

The answer

Ham[] food = {new Spam(), new Yam(), new Ham(), new
for (inti1=0; 1 <food.length; i++) {
System.out.printin(food[i]);
food[i].a();
food[i].b();
System.out.printin();
}

= Tb{e code produces the following output:
am

Yama Hama Spamb
Spam b

Yam
Yama Hama Lambb
Lamb b

Ham
Hama Hamb
Ham b

Ham
Hama Lambb
Lamb b

Lamb()};

55

Copyright 2006 by Pearson Education

Relatedness of types

= Consider the task of writing classes to represent 2D
shapes such as Circle , Rectangle , and Triangle

= There are certain attributes or operations that are
common to all shapes.
perimeter - distance around the outside of the shape
area - amount of 2D space occupied by the shape

= Every shape has these attributes, but each computes
them differently.

—

~ Copyright 2006 by Pearson Education 57

—

—

Shape area, perimeter
= Rectangle (as defined by width w and height h):

area =wh
perimeter = 2w + 2h

= Circle (as defined by radius r):
area = T I?
perimeter =2Tr

= Triangle (as defined by side lengths a, b, and ¢)
area =V(s (s-a)(s-b)(s-0))
wheres = Y2 (a + b + ¢)
perimeter =a+b+c

" Copyright 2006 by Pearson Education >8

Common behavior

= Let's write shape classes with methods named
perimeter and area .

= We'd like to be able to write client code that treats
different shape objects in the same way, insofar as they
share common behavior, such as:
= Write a method that prints any shape's area and perimeter.

= Create an array of shapes that could hold a mixture of the
various shape objects.

= Write a method that could return a rectangle, a circle, a
triangle, or any other shape we've written.
= Make a DrawingPanel display many shapes on screen.

—

_ Copyright 2006 by Pearson Education 59

—

= iInterface: A list of methods that classes can promise to
implement.

= Inheritance gives you an is-a relationship and code-sharing.

= A Lawyer object can be treated as an Employee, and
Lawyer inherits Employee's code.

» Interfaces give you an is-a relationship without code sharing.
= A Rectangle object can be treated as a Shape.

= Analogous to non-programming idea of roles or certifications:

« "I'm certified as a CPA accountant. The certification assures you
that I know how to do taxes, perform audits, and do consulting."

« "I'm certified as a Shape. That means you can be sure that I know
how to compute my area and perimeter."”

_ Copyright 2006 by Pearson Education 60

—

Interface syntax

= Interface declaration, general syntax:

public interface <name> {
public <type> <name>(<type> <name>, ..., <type> <name>),
public <type> <name>(<type> <name>, ..., <type> <name>),
public <type> <name>(<type> <name>, ..., <type> <name>),

}

Example:

public interface Vehicle {
public double getSpeed();
public void setDirection(int direction);

}

= abstract method: A method header without an implementation.

= The actual bodies of the methods are not specified, because we want
to allow each class to implement the behavior in its own way.

= Exercise: Write an interface for shapes.

= P

~ Copyright 2006 by Pearson Education 61

—

=3}

~_ Copyright 2006 by Pearson Education

—

Shape interface

= An interface for shapes:

public interface Shape {
public double area();
public double perimeter();

= This interface describes the features common to all shapes.
(Every shape has an area and perimeter.)

62

Implementing an interface

= A class can declare that it implements an interface.

= This means the class contains an implementation for each of the
abstract methods in that interface.

(Otherwise, the class will fail to compile.)

= Implementing an interface, general syntax:

public class <name> implements <interface name> {
}
= Example:
public class Bicycle Implements Vehicle {
}

(What must be true about the Bicycle class for it to compile?)

—

= P

~ Copyright 2006 by Pearson Education 63

—

Interface requirements

= If we write a class that claims to be a Shape but doesn't
implement the area and perimeter methods, it will not

compile.

= Example:
public class Banana Implements Shape {

}

=« The compiler error message:

Banana.java:1l: Banana is not abstract and does not
override abstract method area() in Shape

public class Banana implements Shape {
N

—

64

~ Copyright 2006 by Pearson Education

—

—

Diagrams of interfaces

«interface»
Shape

grear]
parimetet)
i

__

Circle

radius

Rectangle

Circlefradius)
arear)
perimeterd)

width, height

= We draw arrows upward from the classes to the

Rectangleiw b
arean
perimeter)

interface(s) they implement.

= There is a supertype-subtype relationship here;
e.g., all Circles are Shapes, but not all Shapes are Circles.

= This kind of picture is also called a UML class diagram.

= Exercise: Implement the Circle

—

~ Copyright 2006 by Pearson Education

Triangle

a bt

Triangleda, b,
arear)

perimeter)

, Rectangle

, and Triangle

classes.

65

Complete Circle class

I/l Represents circles.
public class Circle implements Shape {
private double radius;

// Constructs a new circle with the given radius.
public Circle(double radius) {

this.radius = radius;
}

/| Returns the area of this circle.
public double area() {

return Math.Pl * radius * radius;
}

// Returns the perimeter of this circle.
public double perimeter() {

return 2.0 * Math.PIl * radius;
}

=3}

" Copyright 2006 by Pearson Education

66

Complete Rectangle class

I/l Represents rectangles.

public class Rectangle implements Shape {
private double width;
private double height;

/I Constructs a new rectangle with the given dimens lons.
public Rectangle(double width, double height) {

this.width = width;
\ this.height = height;

I/l Returns the area of this rectangle.
public double area() {

return width * height;
}

I/l Returns the perimeter of this rectangle.
public double perimeter() {

return 2.0 * (width + height);
}

=3}

~ Copyright 2006 by Pearson Education

67

Complete Triangle class

Il Represents triangles.
public class Triangle implements Shape {

}

=3}

private double a;
private double b;
private double c;

// Constructs a new Triangle given side lengths.
public Triangle(double a, double b, double c) {

this.a = a;
this.b =h;:
this.c =c;

}

// Returns this triangle's area using Heron's formu
public double area() {

doubles=(a+b+c)/2.0;
\ return Math.sgrt(s *(s- a)*(s- b)*(s- ¢));

I/l Returns the perimeter of this triangle.
public double perimeter() {

returna + b + c;
}

~ Copyright 2006 by Pearson Education

68

—

—

Interfaces and polymorphism

= Using interfaces doesn't benefit the class author so
much as the client code author.

= The is-a relationship provided by the interface means that the
client can take advantage of polymorphism.

= Example:

public static void printinfo(Shape s){
System.out.printin("The shape: " + s);
System.out.printin("area : " + s.area());

System.out.printin("perim: " + s.perimeter());
System.out.printin();

}

= Any object that implements the interface may be passed as the
parameter to the above method.
Circle circ = new Circle(12.0);
Triangle tri = new Triangle(5, 12, 13);
printinfo(circ);
printinfo(tri);

_ Copyright 2006 by Pearson Education 69

—

= P

—

Arrays of interface type

= We can create an array of an interface type, and store
any object implementing that interface as an element.

Circle circ = new Circle(12.0);
Rectangle rect = new Rectangle(4, 7);
Triangle tri = new Triangle(5, 12, 13);

Shape[] shapes = {circ, tri, rect};

for (inti = 0; i < shapes.length; i++) {
printinfo(~ shapes|[i]);

}

» Each element of the array executes the appropriate behavior for
its object when it is passed to the printinfo method, or when

area or perimeter is called on it.

~ Copyright 2006 by Pearson Education 70

