
1Copyright 2006 by Pearson Education

Building Java ProgramsBuilding Java Programs

Chapter 9:
Inheritance and Interfaces

2Copyright 2006 by Pearson Education

Chapter outline
� background

� categories of employees

� relationships and hierarchies

� inheritance programming

� creating subclasses

� overriding behavior

� multiple levels of inheritance

� interacting with the superclass using the super keyword

� inheritance and design

� polymorphism

� "polymorphism mystery" problems

� interfaces

3Copyright 2006 by Pearson Education

InheritanceInheritance

reading: 9.1 - 9.2

4Copyright 2006 by Pearson Education

The software crisis
� software engineering: The practice of
conceptualizing, designing, developing, documenting,
and testing large-scale computer programs.

� Large-scale projects face many issues:

� getting many programmers to work together

� getting code finished on time

� avoiding redundant code

� finding and fixing bugs

� maintaining, improving, and reusing existing code

� code reuse: The practice of writing program code once
and using it in many contexts.

5Copyright 2006 by Pearson Education

Law firm employee analogy
� common rules: hours, vacation time, benefits, regulations, ...

� all employees attend common orientation to learn general rules

� each employee receives 20-page manual of the common rules

� each subdivision also has specific rules:

� employee attends a subdivision-specific orientation to learn them

� employee receives a smaller (1-3 page) manual of these rules

� smaller manual adds some rules and also changes some rules from
the large manual ("use the pink form instead of yellow form"...)

6Copyright 2006 by Pearson Education

Separating behavior
� Why not just have a 22 page Lawyer manual, a 21-page
Secretary manual, a 23-page Marketer manual, etc.?

� Some advantages of the separate manuals:

� maintenance: If a common rule changes, we'll need to update
only the common manual.

� locality: A person can look at the lawyer manual and quickly
discover all rules that are specific to lawyers.

� Some key ideas from this example:

� It's useful to be able to describe general rules that will apply to
many groups (the 20-page manual).

� It's also useful for a group to specify a smaller set of rules for
itself, including being able to replace rules from the overall set.

7Copyright 2006 by Pearson Education

Is-a relationships, hierarchies

� is-a relationship: A hierarchical connection where one
category can be treated as a specialized version of
another.

� every marketer is an employee

� every legal secretary is a secretary

� inheritance hierarchy: A set of classes connected by
is-a relationships that can share common code.

� Often drawn as a downward tree of connected boxes or ovals
representing classes:

8Copyright 2006 by Pearson Education

Employee regulations
� Consider the following employee regulations:

� Employees work 40 hours per week.

� Employees make $40,000 per year, except legal secretaries
who make $5,000 extra per year ($45,000 total), and
marketers who make $10,000 extra per year ($50,000 total).

� Employees have 2 weeks of paid vacation leave per year,
except lawyers who get an extra week (a total of 3).

� Employees should use a yellow form to apply for leave, except
for lawyers who use a pink form.

� Each type of employee has some unique behavior:

� Lawyers know how to sue.

� Marketers know how to advertise.

� Secretaries know how to take dictation.

� Legal secretaries know how to prepare legal documents.

9Copyright 2006 by Pearson Education

General employee code
// A class to represent employees in general (20-pa ge manual).
public class Employee {

public int getHours() {
return 40; // works 40 hours / week

}

public double getSalary() {
return 40000.0; // $40,000.00 / year

}

public int getVacationDays() {
return 10; // 2 weeks' paid vacation

}

public String getVacationForm() {
return "yellow"; // use the yellow form

}
}

� Exercise: Implement class Secretary , based on the previous
employee regulations.

10Copyright 2006 by Pearson Education

Redundant secretary code
// A redundant class to represent secretaries.
public class Secretary {

public int getHours() {
return 40; // works 40 hours / week

}

public double getSalary() {
return 40000.0; // $40,000.00 / year

}

public int getVacationDays() {
return 10; // 2 weeks' paid vacation

}

public String getVacationForm() {
return "yellow"; // use the yellow form

}

public void takeDictation(String text) {
System.out.println("Taking dictation of text: " + te xt);

}
}

11Copyright 2006 by Pearson Education

Desire for code-sharing
� The takeDictation method is the only unique behavior
in the Secretary class.

� We'd like to be able to say the following:

// A class to represent secretaries.

public class Secretary {

<copy all the contents from Employee class.>

public void takeDictation(String text) {

System.out.println("Taking dictation of text: " + te xt);

}

}

12Copyright 2006 by Pearson Education

Inheritance
� inheritance: A way to form new classes based on
existing classes, taking on their attributes/behavior.

� a way to group related classes

� a way to share code between two or more classes

� We say that one class can extend another by absorbing
its state and behavior.

� superclass: The parent class that is being extended.

� subclass: The child class that extends the superclass and
inherits its behavior.

� The subclass receives a copy of every field and method from its
superclass.

13Copyright 2006 by Pearson Education

Inheritance syntax
� Creating a subclass, general syntax:

public class <name> extends <superclass name> {

� Example:

public class Secretary extends Employee {

....

}

� By extending Employee , each Secretary object now:

� receives a getHours , getSalary , getVacationDays , and
getVacationForm method automatically

� can be treated as an Employee by any other code (seen later)

(e.g. a Secretary could be stored in a variable of type
Employee or stored as an element of an Employee[])

14Copyright 2006 by Pearson Education

Improved secretary code
// A class to represent secretaries.
public class Secretary extends Employee {

public void takeDictation(String text) {
System.out.println("Taking dictation of text: " + te xt);

}
}

� Now we only write the parts unique to each type.
� Secretary inherits getHours , getSalary , getVacationDays ,
and getVacationForm methods from Employee .

� Secretary adds the takeDictation method.

15Copyright 2006 by Pearson Education

Implementing Lawyer
Let's implement a Lawyer class.

� Consider the following employee regulations:

� Lawyers who get an extra week of paid vacation (a total of 3).

� Lawyers use a pink form when applying for vacation leave.

� Lawyers have some unique behavior: they know how to sue.

� The problem: We want lawyers to inherit most of the
behavior of the general employee, but we want to
replace certain parts with new behavior.

16Copyright 2006 by Pearson Education

Overriding methods
� override: To write a new version of a method in a
subclass that replaces the superclass's version.

� There is no special syntax for overriding.
To override a superclass method, just write a new version of it
in the subclass. This will replace the inherited version.

� Example:

public class Lawyer extends Employee {
// overrides getVacationForm method in Employee clas s
public String getVacationForm() {

return "pink";
}

...
}

� Exercise: Complete the Lawyer class.

17Copyright 2006 by Pearson Education

Complete Lawyer class
// A class to represent lawyers.
public class Lawyer extends Employee {

// overrides getVacationForm from Employee class
public String getVacationForm() {

return "pink";
}

// overrides getVacationDays from Employee class
public int getVacationDays() {

return 15; // 3 weeks vacation
}

public void sue() {
System.out.println("I'll see you in court!");

}
}

� Exercise: Now complete the Marketer class. Marketers make
$10,000 extra ($50,000 total) and know how to advertise.

18Copyright 2006 by Pearson Education

Complete Marketer class
// A class to represent marketers.
public class Marketer extends Employee {

public void advertise() {
System.out.println("Act now while supplies last!");

}

public double getSalary() {
return 50000.0; // $50,000.00 / year

}
}

19Copyright 2006 by Pearson Education

Levels of inheritance
�Deep hierarchies can be created by multiple
levels of subclassing.

� Example: The legal secretary is the same as a regular secretary
except for making more money ($45,000) and being able to file
legal briefs.

public class LegalSecretary extends Secretary {
...

}

� Exercise: Complete the LegalSecretary class.

20Copyright 2006 by Pearson Education

Complete LegalSecretary class
// A class to represent legal secretaries.
public class LegalSecretary extends Secretary {

public void fileLegalBriefs() {
System.out.println("I could file all day!");

}

public double getSalary() {
return 45000.0; // $45,000.00 / year

}
}

21Copyright 2006 by Pearson Education

Interacting with the Interacting with the

superclass:superclass:
the the supersuper keywordkeyword

reading: 9.3

22Copyright 2006 by Pearson Education

Changes to common behavior

� Imagine that a company-wide change occurs that
affects all employees.

Example: Because of inflation, everyone is given a $10,000 raise.

� The base employee salary is now $50,000.

� Legal secretaries now make $55,000.

� Marketers now make $60,000.

� We must modify our code to reflect this policy change.

23Copyright 2006 by Pearson Education

Modifying the superclass
� This modified Employee class handles the new raise:

// A class to represent employees in general (20-pa ge manual).
public class Employee {

public int getHours() {
return 40; // works 40 hours / week

}

public double getSalary() {
return 50000.0; // $50,000.00 / year

}

...
}

� What problem now exists in the code?

� The Employee subclasses are now incorrect.

� They have overridden the getSalary method to return other

values such as 45,000 and 50,000 that need to be changed.

24Copyright 2006 by Pearson Education

An unsatisfactory solution
public class LegalSecretary extends Secretary {

public double getSalary() {

return 55000.0;

}

...

}

public class Marketer extends Employee {

public double getSalary() {

return 60000.0;

}

...

}

� The employee subtypes' salaries are tied to the overall base
employee salary, but the subclasses' getSalary code does not

reflect this relationship.

25Copyright 2006 by Pearson Education

Calling overridden methods
� A subclass can call an overridden method with the

super keyword.

� Calling an overridden method, syntax:

super . <method name> (<parameter(s)>)

� Example:

public class LegalSecretary extends Secretary {
public double getSalary() {

double baseSalary = super.getSalary() ;
return baseSalary + 5000.0;

}
...

}

� Exercise: Modify the Lawyer and Marketer classes to also use
the super keyword.

26Copyright 2006 by Pearson Education

Improved subclasses
public class Lawyer extends Employee {

public String getVacationForm() {
return "pink";

}

public int getVacationDays() {
return super.getVacationDays() + 5;

}

public void sue() {
System.out.println("I'll see you in court!");

}
}

public class Marketer extends Employee {
public void advertise() {

System.out.println("Act now while supplies last!");
}

public double getSalary() {
return super.getSalary() + 10000.0;

}
}

27Copyright 2006 by Pearson Education

Inheritance and constructors
� Imagine that we want to give employees more vacation
days the longer they've been with the company.

� For each year worked, we'll award 2 additional vacation days.

� When an Employee object is constructed, we'll pass in the
number of years the person has been with the company.

� This will require us to modify our Employee class and add some

new state and behavior.

� Exercise: Make the necessary modifications to the Employee
class.

28Copyright 2006 by Pearson Education

Modified Employee class
public class Employee {

private int years;

public Employee(int years) {
this.years = years;

}

public int getHours() {
return 40;

}

public double getSalary() {
return 50000.0;

}

public int getVacationDays() {
return 10 + 2 * years;

}

public String getVacationForm() {
return "yellow";

}
}

29Copyright 2006 by Pearson Education

Problem with constructors
� Now that we've added the constructor to the Employee
class, our subclasses do not compile. The error:

Lawyer.java:2: cannot find symbol
symbol : constructor Employee()
location: class Employee
public class Lawyer extends Employee {

^

� The short explanation: Once we write a constructor (that
requires parameters) in the superclass, we must now write
constructors for our employee subclasses as well.

� The long explanation: (next slide)

30Copyright 2006 by Pearson Education

The detailed explanation
� Constructors aren't inherited.

� The Employee subclasses don't inherit the
public Employee(int years) constructor.

� Since our subclasses don't have constructors, they receive a
default parameterless constructor that contains the following:

public Lawyer() {
super(); // calls public Employee() constructor

}

� But our public Employee(int years) replaces
the default Employee constructor.

� Therefore all the subclasses' default constructors are now trying
to call a non-existent default superclass constructor.

31Copyright 2006 by Pearson Education

Calling superclass constructor

� Syntax for calling superclass's constructor:

super(<parameter(s)>);

� Example:
public class Lawyer extends Employee {

public Lawyer(int years) {
super(years); // call Employee constructor

}
...

}

� The call to the superclass constructor must be the first
statement in the subclass constructor.

� Exercise: Make a similar modification to the Marketer class.

32Copyright 2006 by Pearson Education

Modified Marketer class
// A class to represent marketers.
public class Marketer extends Employee {

public Marketer(int years) {
super(years);

}

public void advertise() {
System.out.println("Act now while supplies last!");

}

public double getSalary() {
return super.getSalary() + 10000.0;

}
}

� Exercise: Modify the Secretary subclass to make it compile:

� Secretaries' years of employment are not tracked and they do not
earn extra vacation for them.

� Secretary objects are also constructed without a years parameter.

33Copyright 2006 by Pearson Education

Modified Secretary class
// A class to represent secretaries.
public class Secretary extends Employee {

public Secretary() {
super(0);

}

public void takeDictation(String text) {
System.out.println("Taking dictation of text: " + te xt);

}
}

� Note that since the Secretary doesn't require any parameters to its

constructor, the LegalSecretary now compiles without a constructor

(its default constructor calls the parameterless Secretary constructor).

� This isn't the best solution; it isn't that Secretaries work for 0

years, it's that they don't receive a bonus. How can we fix it?

34Copyright 2006 by Pearson Education

Inheritance and fields
� Suppose that we want to give lawyers a $5000 raise for
each year they've been with the company.

� The following modification doesn't work:
public class Lawyer extends Employee {

public Lawyer(int years) {
super(years);

}

public double getSalary() {
return super.getSalary() + 5000 * years;

}
...

}

� The error is the following:
Lawyer.java:7: years has private access in Employee

return super.getSalary() + 5000 * years;
^

35Copyright 2006 by Pearson Education

Private access limitations
public class Lawyer extends Employee {

public Lawyer(int years) {
super(years);

}

public double getSalary() {
return super.getSalary() + 5000 * years;

}
...

}

� The error is the following:
Lawyer.java:7: years has private access in Employee

return super.getSalary() + 5000 * years;
^

� Private fields cannot be directly accessed from other
classes, not even subclasses.

� One reason for this is to prevent malicious programmers from
using subclassing to circumvent encapsulation.

� How can we get around this limitation?

36Copyright 2006 by Pearson Education

Improved Employee code
Add an accessor for any field needed by the superclass.
public class Employee {

private int years;

public Employee(int years) {
this.years = years;

}

public int getYears() {
return years;

}
...

}

public class Lawyer extends Employee {
public Lawyer(int years) {

super(years);
}

public double getSalary() {
return super.getSalary() + 5000 * getYears() ;

}
...

}

37Copyright 2006 by Pearson Education

Revisiting Secretary
� The Secretary class currently has a poor solution.

� We set all Secretaries to 0 years because they do not get a
vacation bonus for their service.

� If we call getYears on a Secretary object, we'll always get 0.

� This isn't a good solution; what if we wanted to give some other
reward to all employees based on years of service?

� Let's redesign our Employee class a bit to allow for a

better solution.

38Copyright 2006 by Pearson Education

Improved Employee code
Let's separate the standard 10 vacation days from those
that are awarded based on seniority.

public class Employee {
private int years;

public Employee(int years) {
this.years = years;

}

public int getVacationDays() {
return 10 + getSeniorityBonus() ;

}

// vacation days given for each year in the company
public int getSeniorityBonus() {

return 2 * years;
}
...

}

� How does this help us improve the Secretary ?

39Copyright 2006 by Pearson Education

Improved Secretary code
The Secretary can selectively override the
getSeniorityBonus method, so that when it runs its
getVacationDays method, it will use this new version as

part of the computation.
� Choosing a method at runtime like this is called dynamic binding.

public class Secretary extends Employee {
public Secretary(int years) {

super(years);
}

// Secretaries don't get a bonus for their years of service.
public int getSeniorityBonus() {

return 0;
}

public void takeDictation(String text) {
System.out.println("Taking dictation of text: " + te xt);

}
}

40Copyright 2006 by Pearson Education

PolymorphismPolymorphism

reading: 9.2

41Copyright 2006 by Pearson Education

Polymorphism
� polymorphism: The ability for the same code to be
used with several different types of objects, and behave
differently depending on the type of object used.

� A variable of a type T can legally refer to an object of
any subclass of T.

Employee person = new Lawyer(3);

System.out.println(person.getSalary()); // 65000.0

System.out.println(person.getVacationForm()); // pink

� You can call any methods from Employee on the variable
person , but not any methods specific to Lawyer (such as sue).

� Once a method is called on the object, it behaves in its normal
way (as a Lawyer , not as a normal Employee).

42Copyright 2006 by Pearson Education

Polymorphism + parameters
� You can declare methods to accept superclass types as
parameters, then pass a parameter of any subtype.

public class EmployeeMain {
public static void main(String[] args) {

Lawyer lisa = new Lawyer(3);
Secretary steve = new Secretary(2);
printInfo(lisa);
printInfo(steve);

}

public static void printInfo(Employee empl) {
System.out.println("salary = " + empl.getSalary());
System.out.println("days = " + empl.getVacationDays());
System.out.println("form = " + empl.getVacationForm());
System.out.println();

}
}

� OUTPUT:
salary = 65000.0
vacation days = 21
vacation form = pink

salary = 50000.0
vacation days = 10
vacation form = yellow

43Copyright 2006 by Pearson Education

Polymorphism + arrays
� You can declare arrays of superclass types, and store
objects of any subtype as elements.

public class EmployeeMain2 {
public static void main(String[] args) {

Employee[] employees = {new Lawyer(3), new Secretar y(2),
new Marketer(4), new LegalSecretary(1)};

for (int i = 0; i < employees.length; i++) {
System.out.println("salary = " +

employees[i].getSalary());
System.out.println("vacation days = " +

employees[i].getVacationDays());
System.out.println();

}
}

}

� OUTPUT:
salary = 65000.0
vacation days = 21

salary = 50000.0
vacation days = 10

salary = 60000.0
vacation days = 18

salary = 55000.0
vacation days = 10

44Copyright 2006 by Pearson Education

Polymorphism problems
� The textbook has several useful exercises to test your
knowledge of polymorphism.

� Each exercise declares a group of approximately 4 or 5 short
classes with inheritance is-a relationships between them.

� A client program calls methods on objects of each class.

� Your task is to read the code and determine the client's output.

(Example on next slide...)

45Copyright 2006 by Pearson Education

A polymorphism problem
� Assume that the following four classes have been declared:

public class Foo {
public void method1() {

System.out.println("foo 1");
}

public void method2() {
System.out.println("foo 2");

}

public String toString() {
return "foo";

}
}

public class Bar extends Foo {
public void method2() {

System.out.println("bar 2");
}

}

(continued on next slide)

46Copyright 2006 by Pearson Education

A polymorphism problem
public class Baz extends Foo {

public void method1() {
System.out.println("baz 1");

}

public String toString() {
return "baz";

}
}

public class Mumble extends Baz {
public void method2() {

System.out.println("mumble 2");
}

}

� What would be the output of the following client code?
Foo[] pity = {new Baz(), new Bar(), new Mumble(), n ew Foo()};
for (int i = 0; i < pity.length; i++) {

System.out.println(pity[i]);
pity[i].method1();
pity[i].method2();
System.out.println();

}

47Copyright 2006 by Pearson Education

Finding output with diagrams
� One way to determine the output is to diagram each
class and its methods, including their output:

� Add the classes from top (superclass) to bottom (subclass).
� Include any inherited methods and their output.

48Copyright 2006 by Pearson Education

Finding output with tables
� Another possible technique for solving these problems is
to make a table of the classes and methods, writing the
output in each square.

Baz

toString

method2

method1

MumbleBarFoomethod

baz

baz 1

Baz

footoString

mumble 2bar 2foo 2method2

foo 1method1

MumbleBarFoomethod

baz

foo 2

baz 1

Baz

bazfoofootoString

mumble 2bar 2foo 2method2

baz 1foo 1foo 1method1

MumbleBarFoomethod

49Copyright 2006 by Pearson Education

Polymorphism answer
Foo[] pity = {new Baz(), new Bar(), new Mumble(), n ew Foo()};
for (int i = 0; i < pity.length; i++) {

System.out.println(pity[i]);
pity[i].method1();
pity[i].method2();
System.out.println();

}

� The code produces the following output:
baz
baz 1
foo 2

foo
foo 1
bar 2

baz
baz 1
mumble 2

foo
foo 1
foo 2

50Copyright 2006 by Pearson Education

Another problem
� Assume that the following classes have been declared:

� The order of classes is changed, as well as the client.

� The methods now sometimes call other methods.

public class Lamb extends Ham {
public void b() {

System.out.print("Lamb b ");
}

}

public class Ham {
public void a() {

System.out.print("Ham a ");
b();

}

public void b() {
System.out.print("Ham b ");

}

public String toString() {
return "Ham";

}
}

51Copyright 2006 by Pearson Education

Another problem 2
public class Spam extends Yam {

public void b() {
System.out.print("Spam b ");

}
}

public class Yam extends Lamb {
public void a() {

System.out.print("Yam a ");
super.a();

}

public String toString() {
return "Yam";

}
}

� What would be the output of the following client code?
Ham[] food = {new Spam(), new Yam(), new Ham(), new Lamb()};
for (int i = 0; i < food.length; i++) {

System.out.println(food[i]);
food[i].a();
System.out.println(); // to end the line of output
food[i].b();
System.out.println(); // to end the line of output
System.out.println();

}

52Copyright 2006 by Pearson Education

The class diagram
� The following diagram depicts the class hierarchy:

53Copyright 2006 by Pearson Education

Polymorphism at work
�Notice that Ham's a method calls b. Lamb
overrides b.

� This means that calling a on a Lamb will also have a
new result.

public class Ham {
public void a() {

System.out.print("Ham a ");
b();

}

public void b() {
System.out.print("Ham b ");

}

public String toString() {
return "Ham";

}
}

public class Lamb extends Ham {
public void b() {

System.out.print("Lamb b ");

54Copyright 2006 by Pearson Education

The table
� Fill out the following table with each class's behavior:

Yam

toString

b

a

SpamLambHammethod

55Copyright 2006 by Pearson Education

The answer
Ham[] food = {new Spam(), new Yam(), new Ham(), new Lamb()};
for (int i = 0; i < food.length; i++) {

System.out.println(food[i]);
food[i].a();
food[i].b();
System.out.println();

}

� The code produces the following output:
Yam
Yam a Ham a Spam b
Spam b

Yam
Yam a Ham a Lamb b
Lamb b

Ham
Ham a Ham b
Ham b

Ham
Ham a Lamb b
Lamb b

56Copyright 2006 by Pearson Education

InterfacesInterfaces

reading: 9.6 - 9.7

57Copyright 2006 by Pearson Education

Relatedness of types
� Consider the task of writing classes to represent 2D
shapes such as Circle , Rectangle , and Triangle .

� There are certain attributes or operations that are
common to all shapes.

perimeter - distance around the outside of the shape

area - amount of 2D space occupied by the shape

� Every shape has these attributes, but each computes
them differently.

58Copyright 2006 by Pearson Education

Shape area, perimeter
� Rectangle (as defined by width w and height h):

area = w h

perimeter = 2w + 2h

� Circle (as defined by radius r):

area = π r2

perimeter = 2 π r

� Triangle (as defined by side lengths a, b, and c)

area = √(s (s - a) (s - b) (s - c))

where s = ½ (a + b + c)

perimeter = a + b + c

59Copyright 2006 by Pearson Education

Common behavior
� Let's write shape classes with methods named

perimeter and area .

� We'd like to be able to write client code that treats
different shape objects in the same way, insofar as they
share common behavior, such as:

� Write a method that prints any shape's area and perimeter.

� Create an array of shapes that could hold a mixture of the
various shape objects.

� Write a method that could return a rectangle, a circle, a
triangle, or any other shape we've written.

� Make a DrawingPanel display many shapes on screen.

60Copyright 2006 by Pearson Education

Interfaces
� interface: A list of methods that classes can promise to
implement.

� Inheritance gives you an is-a relationship and code-sharing.

� A Lawyer object can be treated as an Employee, and
Lawyer inherits Employee's code.

� Interfaces give you an is-a relationship without code sharing.

� A Rectangle object can be treated as a Shape.

� Analogous to non-programming idea of roles or certifications:

� "I'm certified as a CPA accountant. The certification assures you
that I know how to do taxes, perform audits, and do consulting."

� "I'm certified as a Shape. That means you can be sure that I know
how to compute my area and perimeter."

61Copyright 2006 by Pearson Education

Interface syntax
� Interface declaration, general syntax:

public interface <name> {
public <type> <name>(<type> <name>, ..., <type> <name>);
public <type> <name>(<type> <name>, ..., <type> <name>);
...

public <type> <name>(<type> <name>, ..., <type> <name>);
}

Example:
public interface Vehicle {

public double getSpeed();
public void setDirection(int direction);

}

� abstract method: A method header without an implementation.

� The actual bodies of the methods are not specified, because we want
to allow each class to implement the behavior in its own way.

� Exercise: Write an interface for shapes.

62Copyright 2006 by Pearson Education

Shape interface
� An interface for shapes:

public interface Shape {
public double area();
public double perimeter();

}

� This interface describes the features common to all shapes.
(Every shape has an area and perimeter.)

63Copyright 2006 by Pearson Education

Implementing an interface
� A class can declare that it implements an interface.

� This means the class contains an implementation for each of the
abstract methods in that interface.

(Otherwise, the class will fail to compile.)

� Implementing an interface, general syntax:
public class <name> implements <interface name> {

...
}

� Example:
public class Bicycle implements Vehicle {

...
}

(What must be true about the Bicycle class for it to compile?)

64Copyright 2006 by Pearson Education

Interface requirements
� If we write a class that claims to be a Shape but doesn't
implement the area and perimeter methods, it will not
compile.

� Example:
public class Banana implements Shape {

...

}

� The compiler error message:
Banana.java:1: Banana is not abstract and does not
override abstract method area() in Shape

public class Banana implements Shape {

^

65Copyright 2006 by Pearson Education

Diagrams of interfaces

� We draw arrows upward from the classes to the
interface(s) they implement.

� There is a supertype-subtype relationship here;
e.g., all Circles are Shapes, but not all Shapes are Circles.

� This kind of picture is also called a UML class diagram.

� Exercise: Implement the Circle , Rectangle , and Triangle classes.

66Copyright 2006 by Pearson Education

Complete Circle class
// Represents circles.
public class Circle implements Shape {

private double radius;

// Constructs a new circle with the given radius.
public Circle(double radius) {

this.radius = radius;
}

// Returns the area of this circle.
public double area() {

return Math.PI * radius * radius;
}

// Returns the perimeter of this circle.
public double perimeter() {

return 2.0 * Math.PI * radius;
}

}

67Copyright 2006 by Pearson Education

Complete Rectangle class
// Represents rectangles.
public class Rectangle implements Shape {

private double width;
private double height;

// Constructs a new rectangle with the given dimens ions.
public Rectangle(double width, double height) {

this.width = width;
this.height = height;

}

// Returns the area of this rectangle.
public double area() {

return width * height;
}

// Returns the perimeter of this rectangle.
public double perimeter() {

return 2.0 * (width + height);
}

}

68Copyright 2006 by Pearson Education

Complete Triangle class
// Represents triangles.
public class Triangle implements Shape {

private double a;
private double b;
private double c;

// Constructs a new Triangle given side lengths.
public Triangle(double a, double b, double c) {

this.a = a;
this.b = b;
this.c = c;

}

// Returns this triangle's area using Heron's formu la.
public double area() {

double s = (a + b + c) / 2.0;
return Math.sqrt(s * (s - a) * (s - b) * (s - c));

}

// Returns the perimeter of this triangle.
public double perimeter() {

return a + b + c;
}

}

69Copyright 2006 by Pearson Education

Interfaces and polymorphism
� Using interfaces doesn't benefit the class author so
much as the client code author.

� The is-a relationship provided by the interface means that the
client can take advantage of polymorphism.

� Example:
public static void printInfo(Shape s) {

System.out.println("The shape: " + s);
System.out.println("area : " + s.area());
System.out.println("perim: " + s.perimeter());
System.out.println();

}

� Any object that implements the interface may be passed as the
parameter to the above method.
Circle circ = new Circle(12.0);
Triangle tri = new Triangle(5, 12, 13);
printInfo(circ);
printInfo(tri);

70Copyright 2006 by Pearson Education

Arrays of interface type
� We can create an array of an interface type, and store
any object implementing that interface as an element.

Circle circ = new Circle(12.0);
Rectangle rect = new Rectangle(4, 7);
Triangle tri = new Triangle(5, 12, 13);

Shape[] shapes = {circ, tri, rect};
for (int i = 0; i < shapes.length; i++) {

printInfo(shapes[i]);
}

� Each element of the array executes the appropriate behavior for
its object when it is passed to the printInfo method, or when
area or perimeter is called on it.

