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Inheritance and Interfaces
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Chapter outline
� background

� categories of employees

� relationships and hierarchies

� inheritance programming

� creating subclasses

� overriding behavior

� multiple levels of inheritance

� interacting with the superclass using the super keyword

� inheritance and design

� polymorphism

� "polymorphism mystery" problems

� interfaces
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InheritanceInheritance

reading: 9.1 - 9.2
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The software crisis
� software engineering: The practice of 
conceptualizing, designing, developing, documenting, 
and testing large-scale computer programs.

� Large-scale projects face many issues:

� getting many programmers to work together

� getting code finished on time

� avoiding redundant code

� finding and fixing bugs

� maintaining, improving, and reusing existing code

� code reuse: The practice of writing program code once 
and using it in many contexts.
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Law firm employee analogy
� common rules: hours, vacation time, benefits, regulations, ...

� all employees attend common orientation to learn general rules

� each employee receives 20-page manual of the common rules

� each subdivision also has specific rules:

� employee attends a subdivision-specific orientation to learn them

� employee receives a smaller (1-3 page) manual of these rules

� smaller manual adds some rules and also changes some rules from 
the large manual ("use the pink form instead of yellow form"...)
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Separating behavior
� Why not just have a 22 page Lawyer manual, a 21-page 
Secretary manual, a 23-page Marketer manual, etc.?

� Some advantages of the separate manuals:

� maintenance: If a common rule changes, we'll need to update 
only the common manual.

� locality: A person can look at the lawyer manual and quickly 
discover all rules that are specific to lawyers.

� Some key ideas from this example:

� It's useful to be able to describe general rules that will apply to 
many groups (the 20-page manual).

� It's also useful for a group to specify a smaller set of rules for 
itself, including being able to replace rules from the overall set.
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Is-a relationships, hierarchies

� is-a relationship: A hierarchical connection where one 
category can be treated as a specialized version of 
another.

� every marketer is an employee

� every legal secretary is a secretary

� inheritance hierarchy: A set of classes connected by 
is-a relationships that can share common code.

� Often drawn as a downward tree of connected boxes or ovals 
representing classes:
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Employee regulations
� Consider the following employee regulations:

� Employees work 40 hours per week.

� Employees make $40,000 per year, except legal secretaries 
who make $5,000 extra per year ($45,000 total), and 
marketers who make $10,000 extra per year ($50,000 total).

� Employees have 2 weeks of paid vacation leave per year, 
except lawyers who get an extra week (a total of 3).

� Employees should use a yellow form to apply for leave, except 
for lawyers who use a pink form.

� Each type of employee has some unique behavior:

� Lawyers know how to sue.

� Marketers know how to advertise.

� Secretaries know how to take dictation.

� Legal secretaries know how to prepare legal documents.
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General employee code
// A class to represent employees in general (20-pa ge manual).
public class Employee {

public int getHours() {
return 40;           // works 40 hours / week

}

public double getSalary() {
return 40000.0;      // $40,000.00 / year

}

public int getVacationDays() {
return 10;           // 2 weeks' paid vacation

}

public String getVacationForm() {
return "yellow";     // use the yellow form

}
}

� Exercise: Implement class Secretary , based on the previous 
employee regulations.
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Redundant secretary code
// A redundant class to represent secretaries.
public class Secretary {

public int getHours() {
return 40;           // works 40 hours / week

}

public double getSalary() {
return 40000.0;      // $40,000.00 / year

}

public int getVacationDays() {
return 10;           // 2 weeks' paid vacation

}

public String getVacationForm() {
return "yellow";     // use the yellow form

}

public void takeDictation(String text) {
System.out.println("Taking dictation of text: " + te xt);

}
}
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Desire for code-sharing
� The takeDictation method is the only unique behavior 
in the Secretary class.

� We'd like to be able to say the following:

// A class to represent secretaries.

public class Secretary {

<copy all the contents from Employee class.>

public void takeDictation(String text) {

System.out.println("Taking dictation of text: " + te xt);

}

}
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Inheritance
� inheritance: A way to form new classes based on 
existing classes, taking on their attributes/behavior.

� a way to group related classes

� a way to share code between two or more classes

� We say that one class can extend another by absorbing 
its state and behavior.

� superclass: The parent class that is being extended.

� subclass: The child class that extends the superclass and 
inherits its behavior.

� The subclass receives a copy of every field and method from its 
superclass.
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Inheritance syntax
� Creating a subclass, general syntax:

public class <name> extends <superclass name> {

� Example:

public class Secretary extends Employee {

....

}

� By extending Employee , each Secretary object now:

� receives a getHours , getSalary , getVacationDays , and 
getVacationForm method automatically

� can be treated as an Employee by any other code (seen later)

(e.g. a Secretary could be stored in a variable of type 
Employee or stored as an element of an Employee[] )
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Improved secretary code
// A class to represent secretaries.
public class Secretary extends Employee {

public void takeDictation(String text) {
System.out.println("Taking dictation of text: " + te xt);

}
}

� Now we only write the parts unique to each type.
� Secretary inherits getHours , getSalary , getVacationDays , 
and getVacationForm methods from Employee .

� Secretary adds the takeDictation method.
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Implementing Lawyer
Let's implement a Lawyer class.

� Consider the following employee regulations:

� Lawyers who get an extra week of paid vacation (a total of 3).

� Lawyers use a pink form when applying for vacation leave.

� Lawyers have some unique behavior: they know how to sue.

� The problem: We want lawyers to inherit most of the 
behavior of the general employee, but we want to 
replace certain parts with new behavior.



16Copyright 2006 by Pearson Education

Overriding methods
� override: To write a new version of a method in a 
subclass that replaces the superclass's version.

� There is no special syntax for overriding.
To override a superclass method, just write a new version of it 
in the subclass.  This will replace the inherited version.

� Example:

public class Lawyer extends Employee {
// overrides getVacationForm method in Employee clas s
public String getVacationForm() {

return "pink";
}

...
}

� Exercise: Complete the Lawyer class.
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Complete Lawyer class
// A class to represent lawyers.
public class Lawyer extends Employee {

// overrides getVacationForm from Employee class
public String getVacationForm() {

return "pink";
}

// overrides getVacationDays from Employee class
public int getVacationDays() {

return 15;           // 3 weeks vacation
}

public void sue() {
System.out.println("I'll see you in court!");

}
}

� Exercise: Now complete the Marketer class.  Marketers make 
$10,000 extra ($50,000 total) and know how to advertise.
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Complete Marketer class
// A class to represent marketers.
public class Marketer extends Employee {

public void advertise() {
System.out.println( "Act now while supplies last!" );

}

public double getSalary() {
return 50000.0;      // $50,000.00 / year

}
}
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Levels of inheritance
�Deep hierarchies can be created by multiple 
levels of subclassing.

� Example: The legal secretary is the same as a regular secretary 
except for making more money ($45,000) and being able to file 
legal briefs.

public class LegalSecretary extends Secretary {
...

}

� Exercise: Complete the LegalSecretary class.
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Complete LegalSecretary class
// A class to represent legal secretaries.
public class LegalSecretary extends Secretary {

public void fileLegalBriefs() {
System.out.println("I could file all day!");

}

public double getSalary() {
return 45000.0;      // $45,000.00 / year

}
}



21Copyright 2006 by Pearson Education

Interacting with the Interacting with the 

superclass:superclass:
the the supersuper keywordkeyword

reading: 9.3
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Changes to common behavior

� Imagine that a company-wide change occurs that 
affects all employees.

Example: Because of inflation, everyone is given a $10,000 raise.

� The base employee salary is now $50,000.

� Legal secretaries now make $55,000.

� Marketers now make $60,000.

� We must modify our code to reflect this policy change.
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Modifying the superclass
� This modified Employee class handles the new raise:

// A class to represent employees in general (20-pa ge manual).
public class Employee {

public int getHours() {
return 40;           // works 40 hours / week

}

public double getSalary() {
return 50000.0;      // $50,000.00 / year

}

...
}

� What problem now exists in the code?

� The Employee subclasses are now incorrect.

� They have overridden the getSalary method to return other 

values such as 45,000 and 50,000 that need to be changed.
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An unsatisfactory solution
public class LegalSecretary extends Secretary {

public double getSalary() {

return 55000.0;

}

...

}

public class Marketer extends Employee {

public double getSalary() {

return 60000.0;

}

...

}

� The employee subtypes' salaries are tied to the overall base 
employee salary, but the subclasses' getSalary code does not 

reflect this relationship.
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Calling overridden methods
� A subclass can call an overridden method with the 

super keyword.

� Calling an overridden method, syntax:

super . <method name> ( <parameter(s)> )

� Example:

public class LegalSecretary extends Secretary {
public double getSalary() {

double baseSalary = super.getSalary() ;
return baseSalary + 5000.0;

}
...

}

� Exercise: Modify the Lawyer and Marketer classes to also use 
the super keyword.
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Improved subclasses
public class Lawyer extends Employee {

public String getVacationForm() {
return "pink";

}

public int getVacationDays() {
return super.getVacationDays() + 5;

}

public void sue() {
System.out.println("I'll see you in court!");

}
}

public class Marketer extends Employee {
public void advertise() {

System.out.println("Act now while supplies last!");
}

public double getSalary() {
return super.getSalary() + 10000.0;

}
}
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Inheritance and constructors
� Imagine that we want to give employees more vacation 
days the longer they've been with the company.

� For each year worked, we'll award 2 additional vacation days.

� When an Employee object is constructed, we'll pass in the 
number of years the person has been with the company.

� This will require us to modify our Employee class and add some 

new state and behavior.

� Exercise: Make the necessary modifications to the Employee
class.
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Modified Employee class
public class Employee {

private int years;

public Employee(int years) {
this.years = years;

}

public int getHours() {
return 40;

}

public double getSalary() {
return 50000.0;

}

public int getVacationDays() {
return 10 + 2 * years;

}

public String getVacationForm() {
return "yellow";

}
}
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Problem with constructors
� Now that we've added the constructor to the Employee
class, our subclasses do not compile.  The error:

Lawyer.java:2: cannot find symbol
symbol  : constructor Employee()
location: class Employee
public class Lawyer extends Employee {

^

� The short explanation: Once we write a constructor (that 
requires parameters) in the superclass, we must now write 
constructors for our employee subclasses as well.

� The long explanation: (next slide)
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The detailed explanation
� Constructors aren't inherited.

� The Employee subclasses don't inherit the 
public Employee(int years) constructor.

� Since our subclasses don't have constructors, they receive a 
default parameterless constructor that contains the following:

public Lawyer() {
super();        // calls public Employee() constructor

}

� But our public Employee(int years) replaces 
the default Employee constructor.

� Therefore all the subclasses' default constructors are now trying 
to call a non-existent default superclass constructor.
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Calling superclass constructor

� Syntax for calling superclass's constructor:

super( <parameter(s)> );

� Example:
public class Lawyer extends Employee {

public Lawyer(int years) {
super(years);   // call Employee constructor

}
...

}

� The call to the superclass constructor must be the first 
statement in the subclass constructor.

� Exercise: Make a similar modification to the Marketer class.
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Modified Marketer class
// A class to represent marketers.
public class Marketer extends Employee {

public Marketer(int years) {
super(years);

}

public void advertise() {
System.out.println("Act now while supplies last!");

}

public double getSalary() {
return super.getSalary() + 10000.0;

}
}

� Exercise: Modify the Secretary subclass to make it compile:

� Secretaries' years of employment are not tracked and they do not
earn extra vacation for them.

� Secretary objects are also constructed without a years parameter.
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Modified Secretary class
// A class to represent secretaries.
public class Secretary extends Employee {

public Secretary() {
super(0);

}

public void takeDictation(String text) {
System.out.println("Taking dictation of text: " + te xt);

}
}

� Note that since the Secretary doesn't require any parameters to its 

constructor, the LegalSecretary now compiles without a constructor 

(its default constructor calls the parameterless Secretary constructor).

� This isn't the best solution; it isn't that Secretaries work for 0 

years, it's that they don't receive a bonus.  How can we fix it?
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Inheritance and fields
� Suppose that we want to give lawyers a $5000 raise for 
each year they've been with the company.

� The following modification doesn't work:
public class Lawyer extends Employee {

public Lawyer(int years) {
super(years);

}

public double getSalary() {
return super.getSalary() + 5000 * years;

}
...

}

� The error is the following:
Lawyer.java:7: years has private access in Employee

return super.getSalary() + 5000 * years;
^
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Private access limitations
public class Lawyer extends Employee {

public Lawyer(int years) {
super(years);

}

public double getSalary() {
return super.getSalary() + 5000 * years;

}
...

}

� The error is the following:
Lawyer.java:7: years has private access in Employee

return super.getSalary() + 5000 * years;
^

� Private fields cannot be directly accessed from other 
classes, not even subclasses.

� One reason for this is to prevent malicious programmers from 
using subclassing to circumvent encapsulation.

� How can we get around this limitation?



36Copyright 2006 by Pearson Education

Improved Employee code
Add an accessor for any field needed by the superclass.
public class Employee {

private int years;

public Employee(int years) {
this.years = years;

}

public int getYears() {
return years;

}
...

}

public class Lawyer extends Employee {
public Lawyer(int years) {

super(years);
}

public double getSalary() {
return super.getSalary() + 5000 * getYears() ;

}
...

}
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Revisiting Secretary
� The Secretary class currently has a poor solution.

� We set all Secretaries to 0 years because they do not get a 
vacation bonus for their service.

� If we call getYears on a Secretary object, we'll always get 0.

� This isn't a good solution; what if we wanted to give some other
reward to all employees based on years of service?

� Let's redesign our Employee class a bit to allow for a 

better solution.
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Improved Employee code
Let's separate the standard 10 vacation days from those 
that are awarded based on seniority.

public class Employee {
private int years;

public Employee(int years) {
this.years = years;

}

public int getVacationDays() {
return 10 + getSeniorityBonus() ;

}

// vacation days given for each year in the company
public int getSeniorityBonus() {

return 2 * years;
}
...

}

� How does this help us improve the Secretary ?
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Improved Secretary code
The Secretary can selectively override the 
getSeniorityBonus method, so that when it runs its 
getVacationDays method, it will use this new version as 

part of the computation.
� Choosing a method at runtime like this is called dynamic binding.

public class Secretary extends Employee {
public Secretary(int years) {

super(years);
}

// Secretaries don't get a bonus for their years of  service.
public int getSeniorityBonus() {

return 0;
}

public void takeDictation(String text) {
System.out.println("Taking dictation of text: " + te xt);

}
}
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PolymorphismPolymorphism

reading: 9.2
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Polymorphism
� polymorphism: The ability for the same code to be 
used with several different types of objects, and behave 
differently depending on the type of object used.

� A variable of a type T can legally refer to an object of 
any subclass of T.

Employee person = new Lawyer(3);

System.out.println(person.getSalary());        // 65000.0

System.out.println(person.getVacationForm());  // pink

� You can call any methods from Employee on the variable 
person , but not any methods specific to Lawyer (such as sue ).

� Once a method is called on the object, it behaves in its normal 
way (as a Lawyer , not as a normal Employee ).
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Polymorphism + parameters
� You can declare methods to accept superclass types as 
parameters, then pass a parameter of any subtype.

public class EmployeeMain {
public static void main(String[] args) {

Lawyer lisa = new Lawyer(3);
Secretary steve = new Secretary(2);
printInfo(lisa);
printInfo(steve);

}

public static void printInfo( Employee empl ) {
System.out.println("salary = " + empl.getSalary());
System.out.println("days = " + empl.getVacationDays( ));
System.out.println("form = " + empl.getVacationForm( ));
System.out.println();

}
}

� OUTPUT:
salary = 65000.0
vacation days = 21
vacation form = pink

salary = 50000.0
vacation days = 10
vacation form = yellow
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Polymorphism + arrays
� You can declare arrays of superclass types, and store 
objects of any subtype as elements.

public class EmployeeMain2 {
public static void main(String[] args) {

Employee[] employees = {new Lawyer(3), new Secretar y(2),
new Marketer(4), new LegalSecretary(1)};

for (int i = 0; i < employees.length; i++) {
System.out.println("salary = " +

employees[i].getSalary() );
System.out.println("vacation days = " +

employees[i].getVacationDays() );
System.out.println();

}
}

}

� OUTPUT:
salary = 65000.0
vacation days = 21

salary = 50000.0
vacation days = 10

salary = 60000.0
vacation days = 18

salary = 55000.0
vacation days = 10
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Polymorphism problems
� The textbook has several useful exercises to test your 
knowledge of polymorphism.

� Each exercise declares a group of approximately 4 or 5 short 
classes with inheritance is-a relationships between them.

� A client program calls methods on objects of each class.

� Your task is to read the code and determine the client's output.

(Example on next slide...)
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A polymorphism problem
� Assume that the following four classes have been declared:

public class Foo {
public void method1() {

System.out.println("foo 1");
}

public void method2() {
System.out.println("foo 2");

}

public String toString() {
return "foo";

}
}

public class Bar extends Foo {
public void method2() {

System.out.println("bar 2");
}

}

(continued on next slide)
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A polymorphism problem
public class Baz extends Foo {

public void method1() {
System.out.println("baz 1");

}

public String toString() {
return "baz";

}
}

public class Mumble extends Baz {
public void method2() {

System.out.println("mumble 2");
}

}

� What would be the output of the following client code?
Foo[] pity = {new Baz(), new Bar(), new Mumble(), n ew Foo()};
for (int i = 0; i < pity.length; i++) {

System.out.println( pity[i] );
pity[i].method1();
pity[i].method2();
System.out.println();

}
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Finding output with diagrams
� One way to determine the output is to diagram each 
class and its methods, including their output:

� Add the classes from top (superclass) to bottom (subclass).
� Include any inherited methods and their output.
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Finding output with tables
� Another possible technique for solving these problems is 
to make a table of the classes and methods, writing the 
output in each square.

Baz

toString

method2

method1

MumbleBarFoomethod

baz

baz 1

Baz

footoString

mumble 2bar 2foo 2method2

foo 1method1

MumbleBarFoomethod

baz

foo 2

baz 1

Baz

bazfoofootoString

mumble 2bar 2foo 2method2

baz 1foo 1foo 1method1

MumbleBarFoomethod
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Polymorphism answer
Foo[] pity = {new Baz(), new Bar(), new Mumble(), n ew Foo()};
for (int i = 0; i < pity.length; i++) {

System.out.println(pity[i]);
pity[i].method1();
pity[i].method2();
System.out.println();

}

� The code produces the following output:
baz
baz 1
foo 2

foo
foo 1
bar 2

baz
baz 1
mumble 2

foo
foo 1
foo 2
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Another problem
� Assume that the following classes have been declared:

� The order of classes is changed, as well as the client.

� The methods now sometimes call other methods.

public class Lamb extends Ham {
public void b() {

System.out.print("Lamb b   ");
}

}

public class Ham {
public void a() {

System.out.print("Ham a   ");
b();

}

public void b() {
System.out.print("Ham b   ");

}

public String toString() {
return "Ham";

}
}
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Another problem 2
public class Spam extends Yam {

public void b() {
System.out.print("Spam b   ");

}
}

public class Yam extends Lamb {
public void a() {

System.out.print("Yam a   ");
super.a();

}

public String toString() {
return "Yam";

}
}

� What would be the output of the following client code?
Ham[] food = {new Spam(), new Yam(), new Ham(), new  Lamb()};
for (int i = 0; i < food.length; i++) {

System.out.println( food[i] );
food[i].a();
System.out.println();     // to end the line of output
food[i].b();
System.out.println();     // to end the line of output
System.out.println();

}



52Copyright 2006 by Pearson Education

The class diagram
� The following diagram depicts the class hierarchy:
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Polymorphism at work
�Notice that Ham's a method calls b.  Lamb
overrides b.

� This means that calling a on a Lamb will also have a 
new result.

public class Ham {
public void a() {

System.out.print("Ham a   ");
b();

}

public void b() {
System.out.print("Ham b   ");

}

public String toString() {
return "Ham";

}
}

public class Lamb extends Ham {
public void b() {

System.out.print("Lamb b   ");
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The table
� Fill out the following table with each class's behavior:

Yam

toString

b

a

SpamLambHammethod
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The answer
Ham[] food = {new Spam(), new Yam(), new Ham(), new  Lamb()};
for (int i = 0; i < food.length; i++) {

System.out.println(food[i]);
food[i].a();
food[i].b();
System.out.println();

}

� The code produces the following output:
Yam
Yam a   Ham a   Spam b
Spam b

Yam
Yam a   Ham a   Lamb b
Lamb b

Ham
Ham a   Ham b
Ham b

Ham
Ham a   Lamb b
Lamb b
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InterfacesInterfaces

reading: 9.6 - 9.7
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Relatedness of types
� Consider the task of writing classes to represent 2D 
shapes such as Circle , Rectangle , and Triangle .

� There are certain attributes or operations that are 
common to all shapes.

perimeter - distance around the outside of the shape

area - amount of 2D space occupied by the shape

� Every shape has these attributes, but each computes 
them differently.
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Shape area, perimeter
� Rectangle (as defined by width w and height h):

area = w h

perimeter = 2w + 2h

� Circle (as defined by radius r):

area = π r2

perimeter = 2 π r

� Triangle (as defined by side lengths a, b, and c)

area = √(s (s - a) (s - b) (s - c))

where s = ½ (a + b + c)

perimeter = a + b + c 
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Common behavior
� Let's write shape classes with methods named 

perimeter and area .

� We'd like to be able to write client code that treats 
different shape objects in the same way, insofar as they 
share common behavior, such as:

� Write a method that prints any shape's area and perimeter.

� Create an array of shapes that could hold a mixture of the 
various shape objects.

� Write a method that could return a rectangle, a circle, a 
triangle, or any other shape we've written.

� Make a DrawingPanel display many shapes on screen.
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Interfaces
� interface: A list of methods that classes can promise to 
implement.

� Inheritance gives you an is-a relationship and code-sharing.

� A Lawyer object can be treated as an Employee, and
Lawyer inherits Employee's code.

� Interfaces give you an is-a relationship without code sharing.

� A Rectangle object can be treated as a Shape.

� Analogous to non-programming idea of roles or certifications:

� "I'm certified as a CPA accountant.  The certification assures you 
that I know how to do taxes, perform audits, and do consulting."

� "I'm certified as a Shape.  That means you can be sure that I know 
how to compute my area and perimeter."
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Interface syntax
� Interface declaration, general syntax:

public interface <name> {
public <type> <name>( <type> <name>, ..., <type> <name>);
public <type> <name>( <type> <name>, ..., <type> <name>);
...

public <type> <name>( <type> <name>, ..., <type> <name>);
}

Example:
public interface Vehicle {

public double getSpeed();
public void setDirection(int direction);

}

� abstract method: A method header without an implementation.

� The actual bodies of the methods are not specified, because we want 
to allow each class to implement the behavior in its own way.

� Exercise: Write an interface for shapes.
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Shape interface
� An interface for shapes:

public interface Shape {
public double area();
public double perimeter();

}

� This interface describes the features common to all shapes.
(Every shape has an area and perimeter.)
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Implementing an interface
� A class can declare that it implements an interface.

� This means the class contains an implementation for each of the 
abstract methods in that interface.

(Otherwise, the class will fail to compile.)

� Implementing an interface, general syntax:
public class <name> implements <interface name> {

...
}

� Example: 
public class Bicycle implements Vehicle {

...
}

(What must be true about the Bicycle class for it to compile?)
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Interface requirements
� If we write a class that claims to be a Shape but doesn't 
implement the area and perimeter methods, it will not 
compile.

� Example:
public class Banana implements Shape {

...

}

� The compiler error message:
Banana.java:1: Banana is not abstract and does not 
override abstract method area() in Shape

public class Banana implements Shape {

^
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Diagrams of interfaces

� We draw arrows upward from the classes to the 
interface(s) they implement.

� There is a supertype-subtype relationship here;
e.g., all Circles are Shapes, but not all Shapes are Circles.

� This kind of picture is also called a UML class diagram.

� Exercise: Implement the Circle , Rectangle , and Triangle classes.
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Complete Circle class
// Represents circles.
public class Circle implements Shape {

private double radius;

// Constructs a new circle with the given radius.
public Circle(double radius) {

this.radius = radius;
}

// Returns the area of this circle.
public double area() {

return Math.PI * radius * radius;
}

// Returns the perimeter of this circle.
public double perimeter() {

return 2.0 * Math.PI * radius;
}

}
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Complete Rectangle class
// Represents rectangles.
public class Rectangle implements Shape {

private double width;
private double height;

// Constructs a new rectangle with the given dimens ions.
public Rectangle(double width, double height) {

this.width = width;
this.height = height;

}

// Returns the area of this rectangle.
public double area() {

return width * height;
}

// Returns the perimeter of this rectangle.
public double perimeter() {

return 2.0 * (width + height);
}

}
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Complete Triangle class
// Represents triangles.
public class Triangle implements Shape {

private double a;
private double b;
private double c;

// Constructs a new Triangle given side lengths.
public Triangle(double a, double b, double c) {

this.a = a;
this.b = b;
this.c = c;

}

// Returns this triangle's area using Heron's formu la.
public double area() {

double s = (a + b + c) / 2.0;
return Math.sqrt(s * (s - a) * (s - b) * (s - c));

}

// Returns the perimeter of this triangle.
public double perimeter() {

return a + b + c;
}

}
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Interfaces and polymorphism
� Using interfaces doesn't benefit the class author so 
much as the client code author.

� The is-a relationship provided by the interface means that the 
client can take advantage of polymorphism.

� Example:
public static void printInfo( Shape s ) {

System.out.println("The shape: " + s);
System.out.println("area : " + s.area());
System.out.println("perim: " + s.perimeter());
System.out.println();

}

� Any object that implements the interface may be passed as the 
parameter to the above method.
Circle circ = new Circle(12.0);
Triangle tri = new Triangle(5, 12, 13);
printInfo(circ);
printInfo(tri);
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Arrays of interface type
� We can create an array of an interface type, and store 
any object implementing that interface as an element.

Circle circ = new Circle(12.0);
Rectangle rect = new Rectangle(4, 7);
Triangle tri = new Triangle(5, 12, 13);

Shape[] shapes = {circ, tri, rect};
for (int i = 0; i < shapes.length; i++) {

printInfo( shapes[i] );
}

� Each element of the array executes the appropriate behavior for 
its object when it is passed to the printInfo method, or when 
area or perimeter is called on it.


