
1

Building Java Programs

Chapter 2:
Primitive Data and
Definite Loops

These lecture notes are copyright (C) Marty Stepp and Stuart Reges, 2007. They may not be
rehosted, sold, or modified without expressed permission from the authors. All rights reserved.

2

Chapter outline

Lecture 4

� primitive types

� expressions and precedence

� variables: declaration, initialization, assignment

� string concatenation

� modify-and-reassign operators

� System.out.print

Lecture 5

� the for loop

� nested loops

Lecture 6

� drawing complex figures

� variable scope

� class constants

3

Primitive data, expressions,
and variables

� suggested reading: 2.1 - 2.2

4

Programs that examine data

� We have already seen that we can print text using
println and strings:

System.out.println("Hello, world!");

� Now we will learn how to print and manipulate other
kinds of data, such as numbers:

System.out.println(42);

System.out.println(3 + 5 * 7);

System.out.println(12.5 / 8.0);

5

Data types

� type: A category or set of data values.

� Many languages have a notion of data types and ask the
programmer to specify what type of data is being manipulated.

� Example: integer, real number, string

� Internally, the computer stores all data as 0s and 1s.

� examples: 42 --> 101010
"hi" --> 0110100001101001

6

Java's primitive types

� primitive types: Java's built-in simple data types for
numbers, text characters, and logic.

� Java has eight primitive types.

� Types that are not primitive are called object types. (seen later)

� Four primitive types we will use:

Name Description Examples

� int integers (whole numbers) 42, -3 , 0, 926394

� double real numbers 3.14 , -0.25 , 9.4e3

� char single text characters 'a' , 'X' , '?' , '\n'

� boolean logical values true , false

7

Expressions

� expression: A data value, or a set of operations that
compute a data value.

Example: 1 + 4 * 3

� The simplest expression is a literal value.

� A more complex expression can have operators and
parentheses.

� The values that an operator applies to are called operands.

� Five arithmetic operators we will use:
� + addition

� - subtraction or negation

� * multiplication

� / division

� % modulus, a.k.a. remainder

8

Evaluating expressions

� When your Java program executes and encounters a
line with an expression, the expression is evaluated
(its value is computed).
� The expression 3 * 4 is evaluated to obtain 12.

� System.out.println(3 * 4) prints 12, not 3 * 4 .
(How could we print the text 3 * 4 on the screen?)

� When an expression contains more than one operator
of the same kind, it is evaluated left-to-right.
� Examples: 1 + 2 + 3 is (1 + 2) + 3 which is 6

1 - 2 - 3 is (1 - 2) - 3 which is -4

9

Integer division with /

� When we divide integers, the result is also an integer:
the quotient.
� Therefore, 14 / 4 evaluates to 3, not 3.5 .

3 52
4) 14 27) 1425

12 135
2 75

54
21

� Examples:
� 1425 / 27 is 52

� 35 / 5 is 7

� 84 / 10 is 8

� 156 / 100 is 1

� Dividing by 0 causes a runtime error in your program.

10

Integer remainder with %

� The %operator computes the remainder from a division

of integers.
� Example: 14 % 4 is 2

� Example: 218 % 5 is 3

3 43
4) 14 5) 218

12 20
2 18

15
3

� What are the results of the following expressions?
� 45 % 6

� 2 % 2

� 8 % 20

� 11 % 0

11

Applications of %operator

� What expression obtains the last digit (units place) of a
number?
� Example: From 230857 , obtain the 7.

� How could we obtain the last 4 digits of a Social
Security Number?
� Example: From 658236489 , obtain 6489 .

� What expression obtains the second-to-last digit (tens
place) of a number?
� Example: From 7342 , obtain the 4.

� Can the %operator help us determine whether a
number is odd? Can it help us determine whether a
number is divisible by, say, 27?

12

Operator precedence

� precedence: Order in which operations are computed
in an expression.
� Multiplicative operators * / % have a higher level of
precedence than additive operators + - .

1 + 3 * 4 is 13

� Parentheses can be used to force a certain order of evaluation.

(1 + 3) * 4 is 16

� Spacing does not affect order of evaluation.

1+3 * 4-2 is 11

13

Precedence examples

� 1 * 2 + 3 * 5 / 4
� _/

|
2 + 3 * 5 / 4

� _/
|

2 + 15 / 4
� ___/

|
2 + 3

� ________/
|
5

� 1 + 2 / 3 * 5 - 4
� _/

|
1 + 0 * 5 - 4

� ___/
|

1 + 0 - 4
� ______/

|
1 - 4

� _________/
|
-3

14

Precedence questions

� What values result from the following expressions?
� 9 / 5

� 695 % 20

� 7 + 6 * 5

� 7 * 6 + 5

� 248 % 100 / 5

� 6 * 3 - 9 / 4

� (5 - 7) * 4

� 6 + (18 % (17 - 12))

� Which parentheses above are unnecessary (which do
not change the order of evaluation?)

15

Real numbers (double)

� Java can also manipulate real numbers (type double).

� Examples: 6.022 -15.9997 42.0 2.143e17

� The operators + - * / % () all work for real numbers

as well.
� The / produces an exact answer when used on real numbers.
Example: 15.0 / 2.0 is 7.5

� The same rules of precedence that apply to integers
also apply to real numbers.
� () before * / % before + -

16

Real number example

� 2.0 * 2.4 + 2.25 * 4.0 / 2.0
� ___/

|
4.8 + 2.25 * 4.0 / 2.0

� ___/
|

4.8 + 9.0 / 2.0
� _____/

|
4.8 + 4.5

� ____________/
|
9.3

17

Real number precision

� The computer internally represents real numbers in an
imprecise way.

� Example:

System.out.println(0.1 + 0.2);

� The mathematically correct answer should be 0.3

� Instead, the output is 0.30000000000000004

� Later we will learn some ways to produce a better
output for examples like the above.

18

Mixing integers and reals

� When a Java operator is used on an integer and a real
number, the result is a real number.
� Examples: 4.2 * 3 is 12.6

1 / 2.0 is 0.5

� The conversion occurs on a per-operator basis. It
affects only its two operands.
� 7 / 3 * 1.2 + 3 / 2
� _/

|
2 * 1.2 + 3 / 2

� ___/
|
2.4 + 3 / 2

� _/
|

2.4 + 1
� ________/

|
3.4

� Notice how 3 / 2 is still 1 above, not 1.5 .

19

Mixed types example

� 2.0 + 10 / 3 * 2.5 - 6 / 4
� ___/

|
2.0 + 3 * 2.5 - 6 / 4

� _____/
|

2.0 + 7.5 - 6 / 4
� _/

|
2.0 + 7.5 - 1

� _________/
|
9.5 - 1

� ______________/
|
8.5

20

The computer's memory

� Expressions are somewhat like using the computer as a
calculator.

� A good calculator has "memory" keys to store and retrieve a
computed value.

� In what situation(s) is this useful?

� We'd like the ability to save and restore
values in our Java programs, like the
memory keys on the calculator.

21

Variables

� variable: A piece of your computer's memory that is
given a name and type and can store a value.
� Usage:

� compute an expression's result

� store that result into a variable

� use that variable later in the program

� Unlike a calculator, which may only have enough to store a few
values, we can declare as many variables as we want.

� Variables are a bit like preset stations on a car stereo:

22

Declaring variables

� variable declaration statement: A Java statement
that creates a new variable of a given type.

� A variable is declared by writing a statement that says its type,
and then its name.

� Declaration statement syntax:

<type> <name> ;

� The <name> is an identifier.

� Examples: int x;
double myGPA;

23

More on declaring variables

� Declaring a variable sets aside a piece of memory in
which you can store a value.

int x;
int y;

� Part of the computer's memory:

x y (The memory has no value in it yet.)

24

Assignment statements

� assignment statement: A Java statement that stores
a value into a variable's memory location.
� Variables must be declared before they can be assigned a value.

� Assignment statement syntax:
<name> = <value> ;

� Example: x = 3;

� Example: myGPA = 3.25;

x 3 myGPA 3.25

25

More about assignment

� The <value> assigned to a variable can be a complex

expression.

� The expression is evaluated; the variable stores the result.

� Example: x = (2 + 8) / 3 * 5;

x 15

� A variable can be assigned a value more than once.
� Example:

int x;
x = 3;
System.out.println(x); // 3

x = 4 + 7;
System.out.println(x); // 11

26

Using variables' values

� Once a variable has been assigned a value, it can be
used in an expression, just like a literal value.

int x;
x = 3;
System.out.println(x * 5 - 1);

� The above has output equivalent to:

System.out.println(3 * 5 - 1);

27

Assignment and algebra

� Though the assignment statement uses the =
character, it is not an algebraic equation.
� = means, "store the value on the right in the variable on the left"

� Some people read x = 3; as, "x becomes 3" or, "x gets 3"

� We would not say 3 = 1 + 2; because 3 is not a variable.

� What happens when a variable is used on both sides of
an assignment statement?

int x;

x = 3;

x = x + 2; // what happens?

28

Some errors

� A compiler error will result if you declare a variable
twice, or declare two variables with the same name.
� Example:

int x;
int x; // ERROR: x already exists

� A variable that has not been assigned a value cannot
be used in an expression or println statement.

� Example:

int x;

System.out.println(x); // ERROR: x has no value

29

Assignment and types

� A variable can only store a value of its own type.
� Example: int x;

x = 2.5; // ERROR: x can only store int

� An int value can be stored in a double variable.

� The value is converted into the equivalent real number.

� Example: double myGPA;
myGPA = 2;

myGPA 2.0

30

Assignment examples

� What is the output of the following Java code?
int number;

number = 2 + 3 * 4;

System.out.println(number - 1);

number = 16 % 6;

System.out.println(2 * number);

� What is the output of the following Java code?
double average;

average = (11 + 8) / 2;

System.out.println(average);

average = (5 + average * 2) / 2;

System.out.println(average);

31

Declaration/initialization

� A variable can be declared and assigned an initial value

in the same statement.

� Declaration/initialization statement syntax:

<type> <name> = <value> ;

� Examples: double myGPA = 3.95;

int x = (11 % 3) + 12;

same effect as:
double myGPA;
myGPA = 3.95;

int x;
x = (11 % 3) + 12;

32

Multiple declaration error

� The compiler will fail if you try to declare-and-initialize
a variable twice.

� Example:

int x = 3;
System.out.println(x);

int x = 5; // ERROR: variable x already exists
System.out.println(x);

� This is the same as trying to declare x twice.

� How can the code be fixed?

33

Multiple declarations per line

� It is legal to declare multiple variables on one line:
<type> <name>, <name>, ..., <name> ;

� Examples: int a, b, c;
double x, y;

� It is also legal to declare/initialize several at once:
<type> <name> = <value> , ..., <name> = <value> ;

� Examples: int a = 2, b = 3, c = -4;
double grade = 3.5, delta = 0.1;

� The variables must be of the same type.

34

Integer or real number?

� Categorize each of the following quantities by whether an int or
double variable would best to store it:

� credit: Kate Deibel, http://www.cs.washington.edu/homes/deibel/CATs/

real number (double)integer (int)

1. Temperature in degrees Celsius

2. The population of lemmings

3. Your grade point average

4. A person's age in years

5. A person's weight in pounds

6. A person's height in meters

7. Number of miles traveled

8. Number of dry days in the past month

9. Your locker number

10. Number of seconds left in a game

11. The sum of a group of integers

12. The average of a group of integers

35

String concatenation

� string concatenation: Using the + operator between
a String and another value to make a longer String.

� Examples: (Recall: Precedence of + operator is below * / %)

"hello" + 42 is "hello42"

1 + "abc" + 2 is "1abc2"

"abc" + 1 + 2 is "abc12"
1 + 2 + "abc" is "3abc"

"abc" + 9 * 3 is "abc27"

"1" + 1 is "11"

4 - 1 + "abc" is "3abc"

"abc" + 4 - 1 causes a compiler error... why?

36

Printing String expressions

� String expressions with + are useful so that we can

print more complicated messages that involve

computed values.

double grade = (95.1 + 71.9 + 82.6) / 3.0;

System.out.println("Your grade was " + grade);

int students = 11 + 17 + 4 + 19 + 14;

System.out.println("There are " + students +

" students in the course.");

37

Example variable exercise

� Write a Java program that stores the following data:

� Section AA has 17 students.

� Section AB has 8 students.

� Section AC has 11 students.

� Section AD has 23 students.

� Section AE has 24 students.

� Section AF has 7 students.

� The average number of students per section.

and prints the following:
There are 24 students in Section AE.

There are an average of 15 students per section.

38

Modify-and-assign operators

� Java has several shortcut operators that allow you to
quickly modify a variable's value:

Shorthand Equivalent longer version

<variable> += <value> ; <variable> = <variable> + <value> ;

<variable> -= <value> ; <variable> = <variable> - <value> ;

<variable> *= <value> ; <variable> = <variable> * <value> ;

<variable> /= <value> ; <variable> = <variable> / <value> ;

<variable> %= <value> ; <variable> = <variable> % <value> ;

� Examples:
� x += 3; // x = x + 3;

� gpa -= 0.5; // gpa = gpa - 0.5;

� number *= 2; // number = number * 2;

39

Increment and decrement

� The increment and decrement operators increase or
decrease a variable's value by 1.

Shorthand Equivalent longer version

<variable> ++ ; <variable> = <variable> + 1;

<variable> -- ; <variable> = <variable> - 1;

� Examples:
int x = 2;
x++; // x = x + 1;

// x now stores 3

double gpa = 2.5;
gpa++; // gpa = gpa + 1;

// gpa now stores 3.5

40

System.out.print command

� System.out.println prints a line of output and then

advances to a new line.

� Another command named System.out.print prints the

given output without moving to the next line.

� This allows you to print partial messages that can appear on
the same line as each other.

� Example:

System.out.print("Kind of");
System.out.print("Like a cloud,");
System.out.println("I was up");
System.out.print("Way up in the sky");

Output:
Kind ofLike a cloud,I was up
Way up in the sky

41

Chapter outline

Lecture 4

� primitive types

� expressions and precedence

� variables: declaration, initialization, assignment

� string concatenation

� modify-and-reassign operators

� System.out.print

Lecture 5

� the for loop

� nested loops

Lecture 6

� drawing complex figures

� variable scope

� class constants

42

The for loop

� suggested reading: 2.3

43

Repetition with for loops

� So far, when we wanted to perform a task multiple times, we have
written redundant code:

System.out.println("Building Java Programs");
System.out.println(); // print 5 blank lines
System.out.println();
System.out.println();
System.out.println();
System.out.println();
System.out.println("by Stuart Reges and Marty Stepp ");

� Java has a statement called a for loop statement that instructs the
computer to perform a task many times.

System.out.println("Building Java Programs");
for (int i = 1; i <= 5; i++) { // print 5 blank lines

System.out.println();
}
System.out.println("by Stuart Reges and Marty Stepp ");

44

for loop syntax

� for loop: A block of Java code that executes a group
of statements repeatedly until a given test fails.

� General syntax:

for (<initialization> ; <test> ; <update>) {

<statement>;
<statement>;
...

<statement>;
}

� Example:

for (int i = 1; i <= 10; i++) {
System.out.println("His name is Robert Paulson");

}

body

header

45

for loop over range of int s

� We'll write for loops over integers in a given range.
� The loop declares a loop counter variable that is used in the
test, update, and body of the loop.

for (int <name> = 1; <name> <= <value>; <name>++)

� Example:

for (int i = 1; i <= 6; i++) {
System.out.println(i + " squared is " + (i * i));

}

� Possible interpretation: "For each int i from 1 through 6, ..."

� Output:
1 squared is 1
2 squared is 4
3 squared is 9
4 squared is 16
5 squared is 25
6 squared is 36

46

for loop flow diagram

� Behavior of the for loop:

� Start out by performing the <initialization> once.

� Repeatedly execute the <statement(s)> followed by the <update>
as long as the <test> is still a true statement.

47

Loop walkthrough

Let's walk through the following for loop:

for (int i = 1; i <= 3; i++) {
System.out.println(i + " squared is " + (i * i));

}

Output
1 squared is 1
2 squared is 4
3 squared is 9

i

48

Another example for loop

� Example:

System.out.println("+----+");
for (int i = 1; i <= 3; i++) {

System.out.println("\\ /");
System.out.println("/ \\");

}
System.out.println("+----+");

� Output:
+----+
\ /
/ \
\ /
/ \
\ /
/ \
+----+

49

Some for loop variations

� The initial and final values for the loop counter variable can be
arbitrary numbers or expressions:

� Example:

for (int i = -3; i <= 2; i++) {

System.out.println(i);

}

Output:
-3
-2
-1
0
1
2

� Example:

for (int i = 1 + 3 * 4; i <= 5248 % 100; i++) {

System.out.println(i + " squared is " + (i * i));

}

50

Downward-counting for loop

� The update can also be a -- or other operator, to make

the loop count down instead of up.
� This also requires changing the test to say >= instead of <= .

System.out.print("T-minus ");

for (int i = 5; i >= 1; i --) {

System.out.print(i + " ");

}

System.out.println("Blastoff!");

Output:

T-minus 5 4 3 2 1 Blastoff!

51

Single-line for loop

� When a for loop only has one statement in its body, the
{ } braces may be omitted.

for (int i = 1; i <= 6; i++)
System.out.println(i + " squared is " + (i * i));

� However, this can lead to mistakes where a line
appears to be inside a loop, but is not:

for (int i = 1; i <= 3; i++)
System.out.println("This is printed 3 times");
System.out.println("So is this... or is it?");

Output:
This is printed 3 times
This is printed 3 times
This is printed 3 times
So is this... or is it?

52

for loop questions

� Write a loop that produces the following output.
On day #1 of Christmas, my true love sent to me
On day #2 of Christmas, my true love sent to me

On day #3 of Christmas, my true love sent to me

On day #4 of Christmas, my true love sent to me

On day #5 of Christmas, my true love sent to me
...

On day #12 of Christmas, my true love sent to me

� Write a loop that produces the following output.
2 4 6 8

Who do we appreciate

53

Mapping loops to numbers

� Suppose that we have the following loop:
for (int count = 1; count <= 5; count++) {

...

}

� What statement could we write in the body of the loop that
would make the loop print the following output?

3 6 9 12 15

� Answer:
for (int count = 1; count <= 5; count++) {

System.out.print(3 * count + " ");

}

54

Mapping loops to numbers 2

� Now consider another loop of the same style:
for (int count = 1; count <= 5; count++) {

...

}

� What statement could we write in the body of the loop that
would make the loop print the following output?

4 7 10 13 16

� Answer:
for (int count = 1; count <= 5; count++) {

System.out.print(3 * count + 1 + " ");

}

55

Loop number tables

� What statement could we write in the body of the loop
that would make the loop print the following output?
2 7 12 17 22

� To find the pattern, it can help to make a table of the
count and the number to print.
� Each time count goes up by 1, the number should go up by 5.

� But count * 5 is too great by 3, so we must subtract 3.

1720174

22

12

7

2

number to print

25

15

10

5

count * 5

225

123

72

21

count * 5 - 3count

56

Loop table question

� What statement could we write in the body of the loop
that would make the loop print the following output?
17 13 9 5 1

� Let's create the loop table together.
� Each time count goes up 1, the number should ...

� But this multiple is off by a margin of ...

54

1

9

13

17

number to
print

5

3

2

1

count

5-1654

1

9

13

17

number to
print

-20

-12

-8

-4

count * -4

15

93

132

171

count * -4 + 21count

57

Degenerate loops

� Some loops execute 0 times, because of the nature of
their test and update.

// a degenerate loop
for (int i = 10; i < 5; i++) {

System.out.println("How many times do I print?");

}

� Some loops execute endlessly (or far too many times),
because the loop test never fails. A loop that never
terminates is called an infinite loop.

for (int i = 10; i >= 1; i++) {

System.out.println("Runaway Java program!!!");

}

58

Nested loops

� nested loop: Loops placed inside one another.
� The inner loop's counter variable should have a different name
so that it will not conflict with the variable from the outer loop.

for (int i = 1; i <= 3; i++) {
System.out.println("i = " + i);
for (int j = 1; j <= 2; j++) {

System.out.println(" j = " + j);
}

}

Output:
i = 1

j = 1
j = 2

i = 2
j = 1
j = 2

i = 3
j = 1
j = 2

59

More nested loops

� In this example, all of the statements in the outer
loop's body are executed 5 times.

� The inner loop prints 10 numbers each of those 5 times, for a
total of 50 numbers printed.

for (int i = 1; i <= 5; i++) {
for (int j = 1; j <= 10; j++) {

System.out.print((i * j) + " ");
}
System.out.println(); // to end the line

}

Output:
1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50

60

Nested for loop exercise

� What is the output of the following nested for loops?

for (int i = 1; i <= 6; i++) {
for (int j = 1; j <= 10; j++) {

System.out.print("*");
}
System.out.println();

}

� Output:

61

Nested for loop exercise

� What is the output of the following nested for loops?

for (int i = 1; i <= 6; i++) {
for (int j = 1; j <= i; j++) {

System.out.print("*");
}
System.out.println();

}

� Output:
*
**

62

Nested for loop exercise

� What is the output of the following nested for loops?

for (int i = 1; i <= 6; i++) {
for (int j = 1; j <= i; j++) {

System.out.print(i);
}
System.out.println();

}

� Output:
1
22
333
4444
55555
666666

63

Nested for loop exercise

� What nested for loops produce the following output?

1, 1
2, 1
3, 1
1, 2
2, 2
3, 2

� Answer:
for (int y = 1; y <= 2; y++) {

for (int x = 1; x <= 3; x++) {
System.out.println(x + ", " + y);

}
}

64

Nested for loop exercise

� What nested for loops produce the following output?

....1

...2

..3

.4
5

� This is an example of a nested loop problem where we
build multiple complex lines of output:

� outer "vertical" loop for each of the lines

� inner "horizontal" loop(s) for the patterns within each line

outer loop (loops 5 times because there are 5 lines)

inner loop (repeated characters on each line)

65

� First we write the outer loop, which always goes
from 1 to the number of lines desired:

for (int line = 1; line <= 5; line++) {
...

}

� We notice that each line has the following pattern:
� some number of dots (0 dots on the last line)

� a number

....1

...2

..3

.4

5

Nested for loop exercise

66

� Next we make a table to represent any necessary
patterns on that line:

....1

...2

..3

.4

5

� Answer:
for (int line = 1; line <= 5; line++) {

for (int j = 1; j <= (-1 * line + 5); j++) {

System.out.print(".");
}

System.out.println(line);

}

Nested for loop exercise

5

4

3

2

1

value displayed

14

0

2

3

4

of dots

5

3

2

1

line

67

Nested for loop exercise

� A for loop can have more than one loop nested in it.
What is the output of the following nested for loops?

for (int i = 1; i <= 5; i++) {
for (int j = 1; j <= (5 - i); j++) {

System.out.print(" ");
}
for (int k = 1; k <= i; k++) {

System.out.print(i);
}
System.out.println();

}

� Answer:
1

22
333

4444
55555

68

Common nested loop bugs

� It is easy to accidentally type the wrong loop counter variable.

� What is the output of the following nested loops?

for (int i = 1; i <= 10; i++) {

for (int j = 1; i <= 5; j++) {

System.out.print(j);

}

System.out.println();

}

� What is the output of the following nested loops?

for (int i = 1; i <= 10; i++) {

for (int j = 1; j <= 5; i++) {

System.out.print(j);

}

System.out.println();

}

69

How to comment: for loops

� Place a comment on complex loops explaining what they do from a
conceptual standpoint, not the mechanics of the syntax.

� Bad:

// This loop repeats 10 times, with i from 1 to 10.

for (int i = 1; i <= 10; i++) {

for (int j = 1; j <= 5; j++) { // loop goes 5 times

System.out.print(j); // print the j

}

System.out.println();

}

� Better:

// Prints 12345 ten times on ten separate lines.

for (int i = 1; i <= 10; i++) {

for (int j = 1; j <= 5; j++) {

System.out.print(j);

}

System.out.println(); // end the line of output

}

70

Chapter outline

Lecture 4

� primitive types

� expressions and precedence

� variables: declaration, initialization, assignment

� string concatenation

� modify-and-reassign operators

� System.out.print

Lecture 5

� the for loop

� nested loops

Lecture 6

� drawing complex figures

� variable scope

� class constants

71

Drawing complex figures

� suggested reading: 2.4 - 2.5

72

Drawing complex figures

� Write a Java program that produces the following figure
as its output.
� Write nested for loops to capture the repetition.

#================#

| <><> |
| <>....<> |

| <>........<> |

|<>............<>|

|<>............<>|

| <>........<> |
| <>....<> |

| <><> |

#================#

73

Drawing complex figures

� When the task is as complicated as this one, it may
help to write down some steps on paper before we
write our code:
� 1. A pseudo-code description of the algorithm (written in English)

� 2. A table of each line's contents, to help see the pattern in the input

#================#

| <><> |
| <>....<> |

| <>........<> |

|<>............<>|

|<>............<>|
| <>........<> |

| <>....<> |

| <><> |

#================#

74

Pseudo-code

� pseudo-code: A written English description of an
algorithm to solve a programming problem.

� Example: Suppose we are trying to draw a box of stars
on the screen which is 12 characters wide and 7 tall.

� A possible pseudo-code for this algorithm:

print 12 stars.

for each of 5 lines,

print a star.

print 10 spaces.

print a star.

print 12 stars.

* *
* *
* *
* *
* *

75

A pseudo-code algorithm

� A possible pseudo-code for our complex figure task:
1. Draw top line with # , 16 =, then #

2. Draw the top half with the following on each line:
|

some spaces (decreasing in number as we go downward)

<>

some dots (decreasing in number as we go downward)

<>

more spaces (same number as above)

|

3. Draw the bottom half, which is the same
as the top half but upside-down

4. Draw bottom line with # , 16 =, then #

� Our pseudo-code suggests that we
should write a table to learn the
pattern in the top and bottom
halves of the figure.

#================#

| <><> |
| <>....<> |

| <>........<> |

|<>............<>|

|<>............<>|
| <>........<> |

| <>....<> |

| <><> |

#================#

76

Tables to examine output

� A table of the contents of the lines in the "top half" of
the figure:

� What expressions connect each line with its number of spaces
and dots?

1204

823

442

061

dotsspacesline

#================#

| <><> |

| <>....<> |

| <>........<> |

|<>............<>|

|<>............<>|
| <>........<> |

| <>....<> |

| <><> |

#================#

0

2

4

6

line * -2 + 8

121204

8823

4442

0061

4 * line - 4dotsspacesline

77

Implementing the figure

� Let's implement the code for this figure together.

� Some questions we should ask ourselves:

� How many loops do we need on each line of the top half of the
output?

� Which loops are nested inside which
other loops?

� How should we use static methods to
represent the structure and redundancy
of the output?

#================#

| <><> |
| <>....<> |

| <>........<> |

|<>............<>|

|<>............<>|
| <>........<> |

| <>....<> |

| <><> |

#================#

78

Partial solution

// Prints the expanding pattern of <> for the top h alf of the figure.
public static void drawTopHalf() {

for (int line = 1; line <= 4; line++) {
System.out.print("|");

for (int space = 1; space <= (line * -2 + 8); space++) {
System.out.print(" ");

}

System.out.print("<>");

for (int dot = 1; dot <= (line * 4 - 4); dot++) {
System.out.print(".");

}

System.out.print("<>");

for (int space = 1; space <= (line * -2 + 8); space++) {
System.out.print(" ");

}

System.out.println("|");
}

}

79

Scope and class constants

� suggested reading: 2.4

80

Variable scope

� scope: The portion of a program where a given
variable exists.
� A variable's scope is from its declaration to the end of the { }
braces in which it was declared.

� If a variable is declared in a for loop, it exists only in that loop.

� If a variable is declared in a method, it exists only in that method.

public static void example() {
int x = 3;
for (int i = 1; i <= 10; i++) {

System.out.println(x);
}
// i no longer exists here

} // x ceases to exist here
x's scope

i's scope

81

Scope and using variables

� It is illegal to try to use a variable outside of its scope.

public static void main(String[] args) {
example();
System.out.println(x); // illegal

for (int i = 1; i <= 10; i++) {
int y = 5;
System.out.println(y);

}
System.out.println(y); // illegal

}

public static void example() {
int x = 3;
System.out.println(x);

}

82

Overlapping scope

� It is legal to declare variables with the same name, as long as
their scopes do not overlap:

public static void main(String[] args) {
int x = 2;

for (int i = 1; i <= 5; i++) {
int y = 5;
System.out.println(y);

}
for (int i = 3; i <= 5; i++) {

int y = 2;
int x = 4; // illegal
System.out.println(y);

}
}

public static void anotherMethod() {
int i = 6;
int y = 3;
System.out.println(i + ", " + y);

}

83

Problem: redundant values

� Sometimes we have values (called magic numbers)
that are used throughout the program.
� A normal variable cannot be used to fix the magic number
problem, because it is out of scope.

public static void main(String[] args) {
int max = 3;
printTop();
printBottom();

}

public static void printTop() {
for (int i = 1; i <= max; i++) { // ERROR: max not found

for (int j = 1; j <= i; j++) {
System.out.print(j);

}
System.out.println();

}
}

public static void printBottom() {
for (int i = max; i >= 1; i--) { // ERROR: max not found

for (int j = i; j >= 1; j--) {
System.out.print(max); // ERROR: max not found

}
System.out.println();

}
}

84

Class constants

� class constant: A special kind of variable that can be
seen throughout the program.

� The value of a constant can only be set when it is declared.
It can not be changed while the program is running.

� Class constant syntax:
public static final <type> <name> = <value> ;

� Constants' names are usually written in ALL_UPPER_CASE.

� Examples:

public static final int DAYS_IN_WEEK = 7;

public static final double INTEREST_RATE = 3.5;

public static final int SSN = 658234569;

85

Class constant example

� Making the 3 a class constant removes the redundancy:

public static final int MAX_VALUE = 3;

public static void main(String[] args) {
printTop();
printBottom();

}

public static void printTop() {
for (int i = 1; i <= MAX_VALUE; i++) {

for (int j = 1; j <= i; j++) {
System.out.print(j);

}
System.out.println();

}
}

public static void printBottom() {
for (int i = MAX_VALUE; i >= 1; i--) {

for (int j = i; j >= 1; j--) {
System.out.print(MAX_VALUE);

}
System.out.println();

}
}

86

Constants and figures

� Consider the task of drawing the following figures:
+/\/\/\/\/\+
| |
+/\/\/\/\/\+

+/\/\/\/\/\+
| |
| |
| |
| |
| |
+/\/\/\/\/\+

� Each figure is strongly tied to the number 5
(or a multiple of 5, such as 10 ...)

� Let's use a class constant so that these figures will be easily
resizable.

87

Repetitive figure code

� Note the repetition of numbers based on 5 in the code:

public static void drawFigure1() {
drawPlusLine();
drawBarLine();
drawPlusLine();

}

public static void drawPlusLine() {
System.out.print("+");
for (int i = 1; i <= 5; i++) {

System.out.print("/\\");
}
System.out.println("+");

}

public static void drawBarLine() {
System.out.print("|");
for (int i = 1; i <= 10; i++) {

System.out.print(" ");
}
System.out.println("|");

}

� It would be cumbersome to resize the figure.

Output:

+/\/\/\/\/\+
| |
+/\/\/\/\/\+

88

Fixing our code with constant

� A class constant will fix the "magic number" problem:
public static final int FIGURE_WIDTH = 5;

public static void drawFigure1() {
drawPlusLine();
drawBarLine();
drawPlusLine();

}

public static void drawPlusLine() {
System.out.print("+");
for (int i = 1; i <= FIGURE_WIDTH; i++) {

System.out.print("/\\");
}
System.out.println("+");

}

public static void drawBarLine() {
System.out.print("|");
for (int i = 1; i <= 2 * FIGURE_WIDTH; i++) {

System.out.print(" ");
}
System.out.println("|");

}

Output:

+/\/\/\/\/\+
| |
+/\/\/\/\/\+

89

Complex figure w/ constant

� Modify your code from the previous slides to use a
constant so that it can show figures of different sizes.

� The figure originally shown has a size of 4.

#================#

| <><> |

| <>....<> |
| <>........<> |

|<>............<>|

|<>............<>|

| <>........<> |

| <>....<> |
| <><> |

#================#

A figure of size 3:

#============#

| <><> |

| <>....<> |

|<>........<>|

|<>........<>|
| <>....<> |

| <><> |

#============#

90

Partial solution

public static final int SIZE = 4;

// Prints the expanding pattern of <> for the top h alf of the figure.
public static void drawTopHalf() {

for (int line = 1; line <= SIZE; line++) {
System.out.print("|");

for (int space = 1; space <= (line * -2 + (2 * SIZE)); space++) {
System.out.print(" ");

}

System.out.print("<>");

for (int dot = 1; dot <= (line * 4 - 4); dot++) {
System.out.print(".");

}

System.out.print("<>");

for (int space = 1; space <= (line * -2 + (2 * SIZE)); space++) {
System.out.print(" ");

}

System.out.println("|");
}

}

91

Observations about constant

� Adding a constant often changes the amount that is
added to a loop expression, but usually the multiplier
(slope) is unchanged.
public static final int SIZE = 4;

for (int space = 1; space <= (line * -2 + (2 * SIZE)); space++) {

System.out.print(" ");

}

� A constant doesn't always replace every occurrence of
the original value.
for (int dot = 1; dot <= (line * 4 - 4); dot++) {

System.out.print(".");

}

92

Another complex figure

� Write a Java program that produces the following figure
as its output.
� Write nested for loops to capture the repetition.

� Use static methods to capture structure and redundancy.

====+====
|
|
|
====+====
|
|
|
====+====

� After implementing the program, add a constant so
that the figure can be resized.

