
1

Building Java Programs

Supplement 3G:
Graphics

These lecture notes are copyright (C) Marty Stepp and Stuart Reges, 2007. They may not be
rehosted, sold, or modified without expressed permission from the authors. All rights reserved.

2

Lecture outline

Lecture 8

� Drawing 2D graphics
� DrawingPanel and Graphics objects

� drawing and filling shapes

� coordinate system

� colors

� drawing with loops

� drawing with parameterized methods

� basic animation

3

Graphical objects

� We will draw graphics on the screen by interacting with
three classes of objects:
� DrawingPanel: A window on the screen.

� This is not part of Java; it is provided by the instructor.

� Graphics: A "pen" that can draw shapes and lines onto a

window.

� Color: The colors that indicate

what color to draw our shapes.

4

DrawingPanel

� To create a window, construct a DrawingPanel object:

DrawingPanel <name> = new DrawingPanel(<width>, <height>);

Example:

DrawingPanel panel = new DrawingPanel(300, 200);

� The window has nothing on it.
� But we can draw shapes and

lines on it using another object
of a class named Graphics.

5

Graphics

� Shapes are drawn using an object of class Graphics.

� You must place an import declaration in your program:
import java.awt.*;

� Access it by calling the getGraphics method on your DrawingPanel.

� Example:

Graphics g = panel.getGraphics();

� Once you have the Graphics
object, draw shapes by calling
its methods.

� Example:

g.fillRect(10, 30, 60, 35);

g.fillOval(80, 40, 50, 70);

6

Graphics methods

writes text with bottom-left corner at (x, y)drawString(text, x, y)

draws outline of largest oval that fits in
a box of size width * height with top-
left corner at (x, y)

drawOval(x, y, width, height)

fills largest oval that fits in a box of
size width * height with top-left corner
at (x, y)

fillOval(x, y, width, height)

Sets Graphics to paint subsequent

shapes in the given color

setColor(Color)

fills rectangle of size width * height
with top-left corner at (x, y)

fillRect(x, y, width, height)

draws outline of rectangle of size width
* height with top-left corner at (x, y)

drawRect(x, y, width, height)

line between points (x1, y1), (x2, y2)drawLine(x1, y1, x2, y2)

DescriptionMethod name

7

Coordinate system

� Each (x, y) position on the DrawingPanel is
represented by a pixel (picture element).

� The origin (0, 0) is at the window's top-left corner.
� x increases rightward and the y increases downward

� The y is reversed from what you may expect.

� For example, the rectangle from (0, 0) to (200, 100)
looks like this:
(0, 0)

(200, 100)

8

A complete program

import java.awt.*;

public class DrawingExample1 {

public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(300, 200);

Graphics g = panel.getGraphics();

g.fillRect(10, 30, 60, 35);
g.fillOval(80, 40, 50, 70);

}

}

9

Colors

� Colors are specified by constants in the Color class
named: BLACK, BLUE, CYAN, DARK_GRAY, GRAY, GREEN,

LIGHT_GRAY, MAGENTA, ORANGE, PINK, RED, WHITE, and YELLOW

� Pass these to the Graphics object's setColor method.

� Example:
g.setColor(Color.BLACK);
g.fillRect(10, 30, 100, 50);
g.setColor(Color.RED);
g.fillOval(60, 40, 40, 70);

� The background color can be set by calling
setBackground on the DrawingPanel:
� Example:

panel.setBackground(Color.YELLOW);

10

Superimposing shapes

Drawing one shape on top of another causes the last shape to appear
on top of the previous one(s).

import java.awt.*;

public class DrawCar {
public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(200, 100);
panel.setBackground(Color.LIGHT_GRAY);
Graphics g = panel.getGraphics();

g.setColor(Color.BLACK);
g.fillRect(10, 30, 100, 50);

g.setColor(Color.RED);
g.fillOval(20, 70, 20, 20);
g.fillOval(80, 70, 20, 20);

g.setColor(Color.CYAN);
g.fillRect(80, 40, 30, 20);

}
}

11

Custom colors

It is also legal to construct a Color object of your own.

� Colors are specified by three numbers (ints from 0 to 255)

representing the amount of red, green, and blue.

� Computers use red-green-blue or "RGB" as the primary colors to
represent color information.

� Example:

DrawingPanel panel = new DrawingPanel(80, 50);

Color brown = new Color(192, 128, 64);

panel.setBackground(brown);

� or:

DrawingPanel panel = new DrawingPanel(80, 50);

panel.setBackground(new Color(192, 128, 64));

12

Drawing with loops

� We can draw many repetitions of the same item at
different x/y positions with for loops.
� The x or y expression contains the loop counter, i, so that in

each pass of the loop, when i changes, so does x or y.

DrawingPanel panel = new DrawingPanel(400, 300);
panel.setBackground(Color.YELLOW);
Graphics g = panel.getGraphics();

g.setColor(Color.RED);
for (int i = 1; i <= 10; i++) {

g.fillOval(100 + 20 * i,
5 + 20 * i, 50, 50);

}

g.setColor(Color.BLUE);
for (int i = 1; i <= 10; i++) {

g.drawString("Hello, world!",
150 - 10 * i, 200 + 10 * i);

}

13

Loops to change shape's size

A for loop can also vary a shape's size:

import java.awt.*;

public class DrawCircles {

public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(250, 220);

Graphics g = panel.getGraphics();

g.setColor(Color.MAGENTA);

for (int i = 1; i <= 10; i++) {

g.drawOval(30, 5, 20 * i, 20 * i);

}

}

}

14

A loop that varies both

� The loop in this program affects both the size and
shape of the figures being drawn.

� Each pass of the loop, the square drawn becomes 20 pixels
smaller in size, and shifts 10 pixels to the right.

DrawingPanel panel = new DrawingPanel(250, 200);
Graphics g = panel.getGraphics();
for (int i = 1; i <= 10; i++) {

g.drawRect(20 + 10 * i, 5,
200 - 20 * i, 200 - 20 * i);

}

15

Drawing example 2

What sort of figure does the following code draw?

import java.awt.*;

public class DrawingExample2 {
public static final int NUM_CIRCLES = 10;

public static void main(String[] args) {
DrawingPanel panel = new DrawingPanel(220, 200);
Graphics g = panel.getGraphics();

g.setColor(Color.BLUE);
for (int i = 1; i <= NUM_CIRCLES; i++) {

g.fillOval(15 * i, 15 * i, 30, 30);
}

g.setColor(Color.MAGENTA);
for (int i = 1; i <= NUM_CIRCLES; i++) {

g.fillOval(15 * (NUM_CIRCLES
+ 1 - i), 15 * i, 30, 30);

}
}

}

16

Loops that begin at 0

� Often when working with graphics (and with loops in general), we
begin our loop count at 0 and use < instead of <=.

� A loop that repeats from 0 to < 10 still repeats 10 times, just like a
loop that repeats from 1 to <= 10.

� But when the loop counter variable i is used to set the figure's
coordinates, often starting i at 0 gives us the coordinates we want.

� Example: Draw ten stacked rectangles starting at (20, 20), height
10, with widths that start at 100 and decrease by 10 each time:

DrawingPanel panel = new DrawingPanel(160, 160);
Graphics g = panel.getGraphics();

for (int i = 0; i < 10; i++) {
g.drawRect(20, 20 + 10 * i,

100 - 10 * i, 10);
}

17

Drawing w/ loops questions

� Write variations of the preceding
program that draw the figures at right
as output.

18

Drawing w/ loops answers

� Solution #1:
Graphics g = panel.getGraphics();

for (int i = 0; i < 10; i++) {
g.drawRect(20 + 10 * i, 20 + 10 * i,

100 - 10 * i, 10);
}

� Solution #2:
Graphics g = panel.getGraphics();

for (int i = 0; i < 10; i++) {
g.drawRect(110 - 10 * i, 20 + 10 * i,

10 + 10 * i, 10);
}

19

Drawing with methods

� It is possible to draw graphics in different static methods.
� Since you'll need to send commands to the Graphics g to draw the

figure, you should pass Graphics g as a parameter.

import java.awt.*;

public class DrawCar {
public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(200, 100);
panel.setBackground(Color.LIGHT_GRAY);
Graphics g = panel.getGraphics();
drawCar(g);

}

public static void drawCar(Graphics g) {
g.setColor(Color.BLACK);
g.fillRect(10, 30, 100, 50);

g.setColor(Color.RED);
g.fillOval(20, 70, 20, 20);
g.fillOval(80, 70, 20, 20);

g.setColor(Color.CYAN);
g.fillRect(80, 40, 30, 20);

}
}

20

Parameterized figures

� If you want to draw the same figure many times, write a method
to draw that figure and accept the x/y position as parameters.

� Adjust the x/y coordinates of your drawing commands to take into
account the parameters.

� Exercise:
Modify the previous car-drawing method to work at any location,
so that it can produce an image such as the following:

� One car's top-left corner is at (10, 30).

� The other car's top-left corner is at (150, 10).

21

Drawing parameters solution

import java.awt.*;

public class DrawingWithParameters {
public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(260, 100);
panel.setBackground(Color.LIGHT_GRAY);
Graphics g = panel.getGraphics();
drawCar(g, 10, 30);
drawCar(g, 150, 10);

}

public static void drawCar(Graphics g, int x, int y) {
g.setColor(Color.BLACK);
g.fillRect(x, y, 100, 50);

g.setColor(Color.RED);
g.fillOval(x + 10, y + 40, 20, 20);
g.fillOval(x + 70, y + 40, 20, 20);

g.setColor(Color.CYAN);
g.fillRect(x + 70, y + 10, 30, 20);

}
}

22

Drawing parameter question

� Methods can accept any number of parameters to
adjust the figure's appearance.

� Exercise:
Write a new version of the drawCar method that also
allows the cars to be drawn at any size, such as the
following:

23

Drawing parameter solution
import java.awt.*;

public class DrawingWithParameters2 {
public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(210, 100);
panel.setBackground(Color.LIGHT_GRAY);

Graphics g = panel.getGraphics();
drawCar(g, 10, 30, 100);
drawCar(g, 150, 10, 50);

}

public static void drawCar(Graphics g, int x, int y, int size) {
g.setColor(Color.BLACK);
g.fillRect(x, y, size, size / 2);

g.setColor(Color.RED);
g.fillOval(x + size / 10, y + 2 * size / 5,

size / 5, size / 5);
g.fillOval(x + 7 * size / 10, y + 2 * size / 5,

size / 5, size / 5);

g.setColor(Color.CYAN);
g.fillRect(x + 7 * size / 10, y + size / 10,

3 * size / 10, size / 5);
}

}

24

Animation with sleep

� DrawingPanel has a method named sleep that pauses

your program for a given number of milliseconds.

� You can use sleep to produce simple animations.
DrawingPanel panel = new DrawingPanel(250, 200);
Graphics g = panel.getGraphics();

g.setColor(Color.BLUE);
for (int i = 1; i <= NUM_CIRCLES; i++) {

g.fillOval(15 * i, 15 * i, 30, 30);
panel.sleep(500);

}

� Try adding sleep commands to loops in past exercises in this
chapter and watch the panel draw itself piece by piece!

25

Parameterized figure exercise

� Let's write a program together that will display the
following figures on a drawing panel of size 300x400:
� top-left figure:

� overall size = 100

� top-left corner = (10, 10)

� inner rectangle and oval size = 50

� inner top-left corner = (35, 35)

� top-right figure:
� overall size = 60

� top-left corner = (150, 10)

� inner rectangle and oval size = 30

� inner top-left corner = (165, 25)

� bottom figure:

� overall size = 140

� top-left corner = (60, 120)

� inner rectangle and oval size = 70

� inner top-left corner = (95, 155)

