
1

Building Java Programs

Using Objects

These lecture notes are copyright (C) Marty Stepp and Stuart Reges, 2007.  They may not be 
rehosted, sold, or modified without expressed permission from the authors.  All rights reserved.



2

Point objects

� suggested reading: 3.3



3

Point objects

� Java has a class of objects named Point .
� To use Point , you must write:  import java.awt.*;

� Constructing a Point object, general syntax:

Point <name> = new Point( <x>, <y>);

Point <name> = new Point();  // the origin, (0, 0)

� Examples:

Point p1 = new Point(5, -2);

Point p2 = new Point();

� Point objects are useful for several reasons:

� They store two values, an (x, y) pair, in a single variable.

� They have useful methods we can call in our programs.



4

Point object methods

� Data stored in each Point object:

� Useful methods of each Point object:

� Point objects can also be printed using println statements:

Point p = new Point(5, -2);

System.out.println(p); // java.awt.Point[x=5,y=-2]

how far away the point is from point pdistance( p)

adjusts the point's x and y by the given amountstranslate( dx, dy)

sets the point's x and y to the given valuessetLocation( x, y)

DescriptionMethod name

the point's y-coordinatey

the point's x-coordinatex

DescriptionField name



5

Using Point objects

� An example program that uses Point objects:

import java.awt.*;

public class PointMain {

public static void main(String[] args) {

// construct two Point objects

Point p1 = new Point(7, 2);

Point p2 = new Point(4, 3);

// print each point and their distance apart

System.out.println("p1 is " + p1);

System.out.println("p2: (" + p2.x + ", " + p2.y + " )");

System.out.println("distance = " + p1.distance(p2));

// translate the point to a new location

p2.translate(1, 7);

System.out.println("p2: (" + p2.x + ", " + p2.y + " )");

System.out.println("distance = " + p1.distance(p2));

}

}



6

Point objects question

� Write a program that computes a right triangle's perimeter.

� The perimeter is the sum of the triangle's side lengths a+b+c.

� Read values a and b and compute side length c as the distance 
between the points (0, 0) and (a, b).

side a? 12
side b? 5
perimeter is 30.0



7

Point objects answer

import java.awt.*;    // for Point
import java.util.*;   // for Scanner

public class TrianglePerimeter {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);

System.out.print("side a? ");
int a = console.nextInt();
System.out.print("side b? ");
int b = console.nextInt();

Point p1 = new Point();       // 0, 0
Point p2 = new Point(a, b);
double c = p1.distance(p2);
double perimeter = a + b + c;
System.out.println("perimeter is " + perimeter);

}
}



8

Objects as parameters:
value vs. reference semantics

� suggested reading: 3.3



9

Swapping primitive values

� Consider the following code to swap two int variables:

public static void main(String[] args) {
int a = 7;
int b = 35;
System.out.println(a + " " + b);

// swap a with b
a = b;
b = a;

System.out.println(a + " " + b);
}

� What is wrong with this code?  What is its output?



10

Swapping, corrected

� When swapping, you should set aside one variable's 
value into a temporary variable, so it won't be lost.

� Better code to swap two int variables:

public static void main(String[] args) {
int a = 7;
int b = 35;
System.out.println(a + " " + b);

// swap a with b
int temp = a;
a = b;
b = temp;

System.out.println(a + " " + b);
}



11

A swap method?

� Swapping is a common operation, so we might want to 
make it into a method.
� Does the following swap method work?  Why or why not?

public static void main(String[] args) {
int a = 7;
int b = 35;
System.out.println(a + " " + b);

// swap a with b
swap(a, b);

System.out.println(a + " " + b);
}

public static void swap(int a, int b) {
int temp = a;
a = b;
b = a;

}



12

Value semantics

� value semantics: Behavior where variables are copied 
when assigned to each other or passed as parameters.

� Primitive types in Java use value semantics.

� When one variable is assigned to another, the value is copied.

� Modifying the value of one variable does not affect others.

� Example:
int x = 5;

int y = x;     // x = 5, y = 5

y = 17;        // x = 5, y = 17

x = 8;         // x = 8, y = 17

x y



13

Modifying primitive parameters

� When we call a method and pass primitive variables' values as 
parameters, we can assign new values to the parameters inside 
the method.

� But this does not affect the value of the variable that was passed; its 
value was copied, and the two variables are otherwise distinct.

� Example:

public static void main(String[] args) {

int x = 1;

foo( x);

System.out.println(x);   // output: 1

}

public static void foo(int x) {

x = 2;

}

value 1 is copied into parameter

parameter's value is changed to 2
(variable x in main is unaffected)

1x

1 2x



14

Reference semantics

� reference semantics: Behavior where variables refer 
to a common value when assigned to each other or 
passed as parameters.

� Objects in Java use reference semantics.

� Object variables do not actually store an object; they store the
address of an object's location in the computer memory.

� Variables for objects are called reference variables.

� We often draw reference variables as small boxes that point an 
arrow toward the object they refer to.

� Example:

Point p1 = new Point(3, 8);

8y3xp1



15

Multiple references to object

� If two reference variables are assigned to refer to the 
same object, the object is not copied.

� Both variables literally share the same object.

� Calling a method on either variable will modify the same object.

� Example:
DrawingPanel panel1 = new DrawingPanel(80, 50);

DrawingPanel panel2 = panel1;   // same window

panel2.setBackground(Color.CYAN);

panel1

panel2



16

Why references?

� The fact that objects are passed by reference was done 
for several reasons:

� efficiency.  Objects can be large, bulky things.  Having to copy 
them every time they are passed as parameters would slow 
down the program.

� sharing. Since objects hold important state and have behavior 
that modifies that state, it is often more desirable for them to
be shared by parts of the program when they're passed as 
parameters.  Often we want the changes to occur to the same 
object.



17

Reference semantics example

� When panel2 refers to the same object as panel1 , 

modifying either variable's background color will affect 
the same object (and therefore the same window):
DrawingPanel panel1 = new DrawingPanel(80, 50);
DrawingPanel panel2 = new DrawingPanel(80, 50);

DrawingPanel panel3 = new DrawingPanel(80, 50);

panel1.setBackground(Color.RED);

panel2.setBackground(Color.GREEN);
panel3.setBackground(Color.BLUE);

panel2 = panel1;

panel2.setBackground(Color.MAGENTA);



18

Another reference example

Point p1 = new Point(3, 8);
Point p2 = new Point(2, -4);
Point p3 = p2;

� We have 3 variables that refer to 2 unique objects.  If we change 
p3, will p2 be affected?  If we change p2, will p3 be affected?

8y3xp1

-4y2xp2

p3



19

Multiple references

� If two variables refer to the same object, modifying one of them
will also make a change in the other:

p3.translate(5, 1);
System.out.println("(" + p2.x + " " + p2.y + ")");

OUTPUT:

(7, -3)

8y3xp1

-3y7xp2

p3



20

Objects as parameters

� When an object is passed as a parameter, the object is 
not copied.  The same object is referred to by both the 
original variable and the method's parameter.
� If a method is called on the parameter, it will affect the original 
object that was passed to the method.

� Example:
public static void main(String[] args) {

DrawingPanel p = new DrawingPanel(80, 50);
p.setBackground(Color.YELLOW);
bg(p);

}

public static void bg(DrawingPanel panel) {
panel.setBackground(Color.CYAN);

}



21

Another ref. param. example

� Since the variable p1 and the parameter p refer to the same 
object, modifying one will also make a change in the other:

public static void main(String[] args) {
Point p1 = new Point(2, 3);
example(p1);

}

public static void example(Point p) {
p.setLocation(-1, -2);

}

-2y-1xp1

p



22

String objects

� suggested reading: 3.3, 4.2



23

String objects

� string: A sequence of text characters.

� One of the most common types of objects.

� In Java, strings are represented as objects of class String .

� String variables can be declared and assigned, just 

like primitive values:
String <name> = " <text>";

String <name> = <expression that produces a String>;

� Unlike most other objects, a String is not created with new.

� Examples:

String name = "Marla Singer";

int x = 3, y = 5;
String point = "(" + x + ", " + y + ")";



24

Indexes

� The characters in a String are each internally 

numbered with an index, starting with 0:

� Example:

String name = "P. Diddy";

� Individual characters are represented inside the String
by values of a primitive type called char .
� Literal char values are surrounded with apostrophe (single-
quote) marks, such as 'a' or '4' .

� An escape sequence can be represented as a char , such as 
'\n' (new-line character) or '\'' (apostrophe).

character

index

' '

2

'y''d''d''i''D''.''P'

7654310



25

String methods

� Useful methods of each String object:

� These methods are called using the dot notation:
String example = "speak friend and enter";

System.out.println( example.toUpperCase());

a new string with all uppercase letterstoUpperCase()

a new string with all lowercase letterstoLowerCase()

the characters in this string from index1
(inclusive) to index2 (exclusive)

substring( index1, index2)

number of characters in this stringlength()

index where the start of the given string 
appears in this string (-1 if it is not there)

indexOf( str)

character at a specific indexcharAt( index)

DescriptionMethod name



26

String method examples

//     index 012345678901

String s1 = "Stuart Reges";

String s2 = "Marty Stepp";

System.out.println(s1.length());         // 12

System.out.println(s1.indexOf("e"));     // 8

System.out.println(s1.substring(1, 4));  // tua

String s3 = s2.toUpperCase();

System.out.println(s3.substring(6, 10)); // STEP

String s4 = s1.substring(0, 6);

System.out.println(s4.toLowerCase());  // stuart



27

Modifying Strings

� The methods that appear to modify a string 
(substring , toLowerCase , toUpperCase , etc.) actually 

create and return a new string.

String s = "lil bow wow";

s.toUpperCase();

System.out.println(s);   // output: lil bow wow

� If you want to modify the variable, you must reassign it 
to store the result of the method call:

String s = "lil bow wow";

s = s.toUpperCase();

System.out.println(s);   // output: LIL BOW WOW



28

String methods

� Given the following string:
String book = "Building Java Programs";

� How would you extract the word "Java" ?

� How would you change book to store:
"BUILDING JAVA PROGRAMS" ?

� How would you extract the first word from any general string?

a new string with all uppercase letterstoUpperCase()

a new string with all lowercase letterstoLowerCase()

the characters in this string from index1
(inclusive) to index2 (exclusive)

substring( index1, index2)

number of characters in this stringlength()

index where the start of the given string 
appears in this string (-1 if it is not there)

indexOf( str)

character at a specific indexcharAt( index)

DescriptionMethod name



29

Comparing objects

� Relational operators such as < and == only behave 
correctly on primitive values.

� The == operator on String s often evaluates to false even 
when the String s have the same letters in them.

� Example (incorrect):

Scanner console = new Scanner(System.in);
System.out.print("What is your name? ");
String name = console.next();
if ( name == "Barney") {

System.out.println("I love you, you love me,");
System.out.println("We're a happy family!");

}

� This example code will compile, but it will never print the 
message, even if the user does type Barney



30

The equals method

� Objects (such as String , Point , and Color ) should be 
compared for equality by calling a method named 
equals .

� Example (correct):

Scanner console = new Scanner(System.in);
System.out.print("What is your name? ");
String name = console.next();
if ( name.equals("Barney")) {

System.out.println("I love you, you love me,");
System.out.println("We're a happy family!");

}



31

Another example

� The == operator on objects actually compares whether two 
variables refer to the same object.

� The equals method compares whether two objects have the same 

state as each other.

� Given the following code:

Point p1 = new Point(3, 8);
Point p2 = new Point(2, -4);
Point p3 = p2;

� What is printed?

if (p1 == p2) {
System.out.println("1");

}
if (p1.equals(p2)) {

System.out.println("2");
}
if (p2 == p3) {

System.out.println("3");
}

8y3xp1

-4y2xp2

p3



32

String condition methods

� There are several methods of a String object that can 
be used as conditions in if statements:

whether one string contains the other's 
characters at its start

startsWith( str)

whether one string contains the other's 
characters at its end

endsWith( str)

whether two strings contain the same 
characters, ignoring upper vs. lower 
case differences

equalsIgnoreCase( str)

whether two strings contain exactly the 
same characters

equals( str)

DescriptionMethod



33

String condition examples

� Hypothetical examples, assuming the existence of 
various String variables:

� if ( title.endsWith("Ph. D.")) {
System.out.println("What's your number?");

}

� if ( fullName.startsWith("Queen")) {
System.out.println("Greetings, your majesty.");

}

� if ( lastName.equalsIgnoreCase("lumberg")) {
System.out.println("I need your TPS reports!");

}

� if ( name.toLowerCase().indexOf("jr.") >= 0) {
System.out.println("You share your parent's name.");

}



34

Text processing
with String and char

� suggested reading: 4.4



35

Type char

� char: A primitive type representing single characters.
� Individual characters inside a String are stored as char values.

� Literal char values are surrounded with apostrophe
(single-quote) marks, such as 'a' or '4' or '\n' or '\''

� It is legal to have variables, parameters, returns of type char

char letter = 'S';
System.out.println(letter);           // S



36

The charAt method

� The characters of a string can be accessed as char values using 
the String object's charAt method.

String word = console.next();
char firstLetter = word.charAt(0);
if (firstLetter == 'c') {

System.out.println("That's good enough for me!");
}

� We often use for loops that print or examine each character.

String name = "tall";
for (int i = 0; i < name.length(); i++) {

System.out.println( title.charAt(i));
}

Output:
t
a
l
l



37

Text processing

� text processing: Examining, editing, formatting text.
� Text processing often involves for loops that examine the 
characters of a string one by one.

� You can use charAt to search for or count occurrences of a 
particular value in a string.

// Returns the count of occurrences of c in s.
public static int count(String s, char c) {

int count = 0;
for (int i = 0; i < s.length(); i++) {

if ( s.charAt(i) == 't') {
count++;

}
}
return count;

}

� count("mississippi", 'i') returns 4



38

Other things to do with char

� char values can be concatenated with strings.
char initial = 'P';

System.out.println(initial + " Diddy");

� You can compare char values with relational operators:

� 'a' < 'b' and   'Q' != 'q'

� Note that you cannot use these operators on a String .

� An example that prints the alphabet:
for (char c = 'a'; c <= 'z'; c++) {

System.out.print(c);

}



39

char/int and type casting

� All char values are assigned numbers internally by the 

computer, called ASCII values.

� Examples:

'A' is  65, 'B' is  66, 'a' is  97, 'b' is  98

� Mixing char and int causes automatic conversion to int .

'a' + 10  is 107, 'A' + 'A'  is 130

� To convert an integer into the equivalent character, type cast it.

(char) ('a' + 2) is  'c'



40

char vs. String

� 'h' is a char
char c = 'h';

� char values are primitive; you cannot call methods on them

� can't say c.length() or c.toUpperCase()

� "h" is a String
String s = "h";

� Strings are objects; they contain methods that can be called

� can say s.length() 1

� can say s.toUpperCase() "H"

� can say s.charAt(0) h'

� What is s + 1 ?  What is c + 1 ? 

� What is s + s ?  What is c + c ?



41

Text processing questions

� Write a method named pigLatinWord that accepts a 
String as a parameter and outputs that word in 

simplified Pig Latin, by placing the word's first letter at 
the end followed by the suffix ay.
� pigLatinWord("hello") prints  ello-hay

� pigLatinWord("goodbye") prints  oodbye-gay

� Write methods named encode and decode that accept a 
String as a parameter and outputs that String with 

each of its letters increased or decreased by 1.
� encode("hello") prints  ifmmp

� decode("ifmmp") prints  hello



42

Text processing question

� Write a method printName that accepts a full name as 

a parameter, and prints the last name followed by a 
comma, followed by the first name and middle initial.

� For example, 
printName("James Tiberius Kirk"); would output:

Kirk, James T.

a new string with all uppercase letterstoUpperCase()

a new string with all lowercase letterstoLowerCase()

the characters in this string from index1
(inclusive) to index2 (exclusive)

substring( index1, index2)

number of characters in this stringlength()

index where the start of the given string 
appears in this string (-1 if it is not there)

indexOf( str)

character at a specific indexcharAt( index)

DescriptionMethod name


