
1

Building Java Programs

Chapter 6:
File Processing

These lecture notes are copyright (C) Marty Stepp and Stuart Reges, 2007. They may not be
rehosted, sold, or modified without expressed permission from the authors. All rights reserved.

2

Lecture outline

Lecture 14

� File input using Scanner
� File objects

� throwing exceptions

� file names and folder paths

� token-based file processing

Lecture 15

� Line-based file processing

� processing a file line by line

� examining the contents of an individual line

� searching for a particular line in a file

� handling complex and multi-line input records

� handling the file-not-found case

Lecture 16

� Complex input records

� File output using PrintStream

3

File input using Scanner

� suggested reading: 6.1 - 6.2

4

File objects

� Programmers refer to input/output as "I/O".

� Java's File class in the java.io package

represents files on the user's hard drive.
� import java.io.*;

� To read a file, create a File object and pass it to a Scanner .

� Creating a Scanner for a file, general syntax:
Scanner <name> = new Scanner(new File(" <file name>"));

Example:

Scanner input = new Scanner(new File("numbers.txt"));

5

File and path names

� relative path: does not specify any top-level folder
� "names.dat"

� "input/kinglear.txt"

� absolute path: specifies drive letter or top "/" folder

� "C:/Documents/smith/hw6/input/data.csv"

� Windows systems also use backslashes to separate folders.
How would the above filename be written using backslashes?

� When you construct a File object with a relative path,

Java assumes it is relative to the current directory.

� Scanner input = new Scanner(new File("data/readme.t xt"));

� If our program is in: H:/johnson/hw6 ,
Java will look for: H:/johnson/hw6/data/readme.txt .

6

Compiler error with files

� The following program does not compile:

import java.io.*; // for File
import java.util.*; // for Scanner

public class ReadFile {
public static void main(String[] args) {

Scanner input = new Scanner(new File("data.txt"));
String text = input.next();
System.out.println(text);

}
}

� The following compiler error is produced:

ReadFile.java:6: unreported exception
java.io.FileNotFoundException; must be caught or de clared

to be thrown

Scanner input = new Scanner(new File("data.txt"));

^

7

Exceptions

� exception: An object that represents a program error.

� Programs that contain invalid logic cause ("throw") exceptions.

� Trying to read a file that does not exist will throw an exception.

� checked exception: An error that Java forces us to
handle in our program (otherwise it will not compile).

� We must specify what our program will do to handle any
potential file I/O failures.

� We must either:

� declare that our program will handle ("catch") the exception, or

� explicitly state that we choose not to handle the exception
(and we accept that our program will crash if an exception occurs)

8

Throwing exception syntax

� throws clause: Keywords on a method's header to

state that it may throw an exception.

� Somewhat like a waiver of liability form:
"I hereby agree that this method might throw an exception,
and I accept the consequences (crashing) if this happens."

� Throws clause, general syntax:
public static <type> <name>(<params>) throws <type> {

� When doing file I/O, we use FileNotFoundException .

public static void main(String[] args)

throws FileNotFoundException {

9

Fixed compiler error

� The following corrected program does compile:

import java.io.*; // for File, FileNotFoundExce ption
import java.util.*; // for Scanner

public class ReadFile {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("data.txt"));
String text = input.next();
System.out.println(text);

}
}

10

Files and input cursor

� Consider a file numbers.txt that contains this text:
308.2

14.9 7.4 2.8

3.9 4.7 -15.4

2.8

� A Scanner views all input as a stream of characters,

which it processes with its input cursor:
� 308.2\n 14.9 7.4 2.8\n\n\n3.9 4.7 -15.4\n2.8\n

^

� When you call the methods of the Scanner such as next or
nextDouble , the Scanner breaks apart the input into tokens.

11

Input tokens

� token: A unit of user input. Tokens are separated by
whitespace (spaces, tabs, new lines).

� Example: If an input file contains the following:
23 3.14

"John Smith"

� The tokens in the input are the following, and can be
interpreted as the given types:

Token Type(s)
1. 23 int , double , String
2. 3.14 double , String
3. "John String
4. Smith" String

12

Consuming tokens

� Each call to next , nextInt , nextDouble , etc. advances

the cursor to the end of the current token, skipping
over any whitespace.

� We call this consuming input.

input.nextDouble()

� 308.2\n 14.9 7.4 2.8\n\n\n3.9 4.7 -15.4\n2.8\n

^

input.nextDouble()

� 308.2\n 14.9 7.4 2.8\n\n\n3.9 4.7 -15.4\n2.8\n

^

13

File input question

� Consider an input file named numbers.txt that

contains the following text:
308.2

14.9 7.4 2.8

3.9 4.7 -15.4

2.8

� Write a program that reads the first 5 values from this
file and prints them along with their sum. Its output:
number = 308.2

number = 14.9

number = 7.4

number = 2.8

number = 3.9

Sum = 337.19999999999993

14

File input answer

// Displays the first 5 numbers in the given file,
// and displays their sum at the end.

import java.io.*; // for File, FileNotFoundException
import java.util.*;

public class Echo {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("numbers.txt"));
double sum = 0.0;
for (int i = 1; i <= 5; i++) {

double next = input.nextDouble();
System.out.println("number = " + next);
sum += next;

}
System.out.println("Sum = " + sum);

}
}

15

Testing before reading

� The preceding program is impractical because it only
processes exactly 5 values from the input file.
� A better program would read the entire file, regardless of how
many values it contains.

� Reminder: The Scanner has useful methods for testing
to see what the next input token will be:

whether the next token can be
interpreted as type int

hasNextInt()

whether any more lines remainhasNextLine()

whether the next token can be
interpreted as type double

hasNextDouble()

whether any more tokens remainhasNext()

DescriptionMethod Name

16

Test before read question

� Rewrite the previous program so that it reads the
entire file. Its output:

number = 308.2

number = 14.9

number = 7.4

number = 2.8

number = 3.9

number = 4.7

number = -15.4

number = 2.8

Sum = 329.29999999999995

17

Test before read answer

// Displays each number in the given file,
// and displays their sum at the end.

import java.io.*;
import java.util.*;

public class Echo2 {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("numbers.dat"));
double sum = 0.0;
while (input.hasNextDouble()) {

double next = input.nextDouble();
System.out.println("number = " + next);
sum += next;

}
System.out.println("Sum = " + sum);

}
}

18

File processing question

� Modify the preceding program again so that it will
handle files that contain non-numeric tokens.

� The program should skip any such tokens.

� For example, the program should produce the same
output as before when given this input file:

308.2 hello

14.9 7.4 bad stuff 2.8

3.9 4.7 oops -15.4

:-) 2.8 @#*($&

19

File processing answer

// Displays each number in the given file,
// and displays their sum at the end.

import java.io.*;
import java.util.*;

public class Echo3 {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("numbers.dat"));
double sum = 0.0;
while (input.hasNext()) {

if (input.hasNextDouble()) {
double next = input.nextDouble();
System.out.println("number = " + next);
sum += next;

} else {
input.next(); // consume / throw away bad token

}
}
System.out.println("Sum = " + sum);

}
}

20

File processing question

� Write a program that accepts an input file containing integers
representing daily high temperatures.

Example input file:

42 45 37 49 38 50 46 48 48 30 45 42 45 40 48

� Your program should print the difference between each adjacent
pair of temperatures, such as the following:

Temperature changed by 3 deg F
Temperature changed by -8 deg F
Temperature changed by 12 deg F
Temperature changed by -11 deg F
Temperature changed by 12 deg F
Temperature changed by -4 deg F
Temperature changed by 2 deg F
Temperature changed by 0 deg F
Temperature changed by -18 deg F
Temperature changed by 15 deg F
Temperature changed by -3 deg F
Temperature changed by 3 deg F
Temperature changed by -5 deg F
Temperature changed by 8 deg F

21

File processing answer

import java.io.*;
import java.util.*;

public class Temperatures {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("weather.dat")) ;
int temp1 = input.nextInt();

while (input.hasNextInt()) {
int temp2 = input.nextInt();
System.out.println("Temperature changed by " +

(temp2 - temp1) + " deg F");
temp1 = temp2;

}
}

}

22

Lecture outline

Lecture 14

� File input using Scanner
� File objects

� throwing exceptions

� file names and folder paths

� token-based file processing

Lecture 15

� Line-based file processing

� processing a file line by line

� examining the contents of an individual line

� searching for a particular line in a file

� handling complex and multi-line input records

� handling the file-not-found case

Lecture 16

� Complex input records

� File output using PrintStream

23

Line-based file processing

� suggested reading: 6.3

24

Line-by-line processing

� Scanners have a method nextLine that returns from
the input cursor's position to the nearest \n character.

� You can use nextLine to break up a file's contents by line and

examine each line individually.

� Reading a file line-by-line, general syntax:

Scanner input = new Scanner(new File(" <file name>"));

while (input.hasNextLine()) {

String line = input.nextLine();

<process this line...>;

}

25

Line-based input

� nextLine consumes and returns a line as a String .

� The Scanner moves its cursor until it sees a \n new line

character, and returns the text found.

� The \n character is consumed but not returned.

� nextLine is the only non-token-based Scanner method.

� Recall that the Scanner also has a hasNextLine method.

� Example:
23 3.14 John Smith "Hello world"

45.2 19

input.nextLine()
23\t3.14 John Smith\t"Hello world"\n\t\t45.2 19\n

^

input.nextLine()
23\t3.14 John Smith\t"Hello world"\n \t\t45.2 19\n

^

26

File processing question

� Write a program that reads a text file and "quotes" it
by putting a > in front of each line. Example input:
Kelly,

Can you please modify the a5/turnin settings
to make CSE 142 Homework 5 due Wednesday,
July 27 at 11:59pm instead of due tomorrow
at 6pm?

Thanks, Joe

� Example output:
> Kelly,
>
> Can you please modify the a5/turnin settings
> to make CSE 142 Homework 5 due Wednesday,
> July 27 at 11:59pm instead of due tomorrow
> at 6pm?
>
> Thanks, Joe

27

File processing answer

import java.io.*;

import java.util.*;

public class QuoteMessage {

public static void main(String[] args)

throws FileNotFoundException {

Scanner input = new Scanner(new File("message.txt"));

while (input.hasNextLine()) {

String line = input.nextLine();

System.out.println(">" + line);

}

}

}

28

Processing tokens of one line

� Many input files have a data record on each line.
� The contents of each line contain meaningful tokens.

� Example file contents:
123 Susan 12.5 8.1 7.6 3.2
456 Brad 4.0 11.6 6.5 2.7 12
789 Jennifer 8.0 8.0 8.0 8.0 7.5

� Consider the task of computing the total hours worked
for each person represented in the above file.

Enter a name: Brad

Brad (ID#456) worked 36.8 hours (7.36 hours/day)

� Neither line-based nor token-based processing is quite right.
� The better solution is a hybrid approach in which we break the
input into lines, and then break each line into tokens.

29

Scanners on Strings

� A Scanner can be constructed to tokenize a particular
String , such as one line of an input file.

Scanner <name> = new Scanner(<String>);

� Example:
String text = "1.4 3.2 hello 9 27.5";
Scanner scan = new Scanner(text); // five tokens

� We can use this idea to tokenize each line of a file.

Scanner input = new Scanner(new File(" <file name>"));
while (input.hasNextLine()) {

String line = input.nextLine();
Scanner lineScan = new Scanner(line);
<process this line...>;

}

30

Complex input question

� Write a program that computes the total hours worked
and average hours per day for a particular person
represented in the following file.

� Input file contents:
123 Susan 12.5 8.1 7.6 3.2
456 Brad 4.0 11.6 6.5 2.7 12
789 Jennifer 8.0 8.0 8.0 8.0 7.5 7.0

� Example log of execution:
Enter a name: Brad

Brad (ID#456) worked 36.8 hours (7.36 hours/day)

� Example log of execution:
Enter a name: Harvey

Harvey was not found

31

Searching for a line

� Recall: reading a file line-by-line, general syntax:
Scanner input = new Scanner(new File(" <file name>"));

while (input.hasNextLine()) {

String line = input.nextLine();

Scanner lineScan = new Scanner(line);

<process this line...>;

}

� If we are looking for a particular line, often we look for
the token(s) of interest on each line.

� If we find the right value, we'll process the rest of the line.

� Example: If the second token on the line is "Brad", process it.

32

Complex input solution
// This program searches an input file of employees ' hours worked
// for a particular employee and outputs that emplo yee's hours data.

import java.io.*; // for File
import java.util.*; // for Scanner

public class HoursWorked {
public static void main(String[] args)

throws FileNotFoundException {
Scanner console = new Scanner(System.in);
System.out.print("Enter a name: ");
String searchName = console.nextLine(); // e.g. "B RAD"
boolean found = false; // a bool ean flag

Scanner input = new Scanner(new File("hours.txt"));
while (input.hasNextLine()) {

String line = input.nextLine();
Scanner lineScan = new Scanner(line);
int id = lineScan.nextInt(); // e.g. 456
String name = lineScan.next(); // e.g. "Brad "
if (name.equalsIgnoreCase(searchName)) {

processLine(lineScan, name, id);
found = true; // we found them!

}
}

if (!found) { // found will be true if we ever f ound the person
System.out.println(searchName + " was not found");

}
}

33

Complex input solution 2

...

// totals the hours worked by one person and output s their info
public static void processLine(Scanner lineScan,

String name, int id) {

double sum = 0.0;
int count = 0;
while (lineScan.hasNextDouble()) {

sum += lineScan.nextDouble();
count++;

}

double average = sum / count;
System.out.println(name + " (ID#" + id + ") worked " +

sum + " hours (" + average + " hours/day)");
}

}

34

File processing question

� Write a program that reads in a file containing HTML
text, but with the tags missing their < and > brackets.

� Whenever you see any all-uppercase token in the file, surround
it with < and > before you print it to the console.

� You must retain the original orientation/spacing of the tokens
on each line. (Is this problem line-based or token-based?)

Output to console:
<HTML>
<HEAD>
<TITLE> My web page </TITLE>
</HEAD>
<BODY>
<P> There are pics of my cat here,
as well as my cool blog,
which contains <I> awesome </I>
stuff about my trip to Vegas.
</BODY> </HTML>

Input file:
HTML
HEAD
TITLE My web page /TITLE
/HEAD
BODY
P There are pics of my cat here,
as well as my B cool /B blog,
which contains I awesome /I
stuff about my trip to Vegas.
/BODY /HTML

35

File processing solution

� The following code solves the HTML problem:
import java.io.*;
import java.util.*;

public class WebPage {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("page.html"));
while (input.hasNextLine()) {

String line = input.nextLine();
Scanner lineScan = new Scanner(line);
while (lineScan.hasNext()) {

String token = lineScan.next();
if (token.equals(token.toUpperCase())) {

// this is an HTML tag
System.out.print("<" + token + "> ");

} else {
System.out.print(token + " ");

}
}
System.out.println();

}
}

}

36

Lecture outline

Lecture 14

� File input using Scanner
� File objects

� throwing exceptions

� file names and folder paths

� token-based file processing

Lecture 15

� Line-based file processing

� processing a file line by line

� examining the contents of an individual line

� searching for a particular line in a file

� handling complex and multi-line input records

Lecture 16

� handling the file-not-found case

� Complex input records

� File output using PrintStream

37

Prompting for a file name

� We can ask the user to tell us the file to read.
� We should use the nextLine method on the console Scanner ,
because the file name might have spaces in it.

// prompt for the file name
Scanner console = new Scanner(System.in);

System.out.print("Type a file name to use: ");

String filename = console.nextLine();

Scanner input = new Scanner(new File(filename));

� What if the user types a file name that does not exist?

38

Fixing file-not-found issues

� File objects have an exists method we can use:

Scanner console = new Scanner(System.in);
System.out.print("Type a file name to use: ");
String filename = console.nextLine();
File file = new File(filename);

while (!file.exists()) {
System.out.print("File not found! Try again: ");
filename = console.nextLine();
file = new File(filename);

}
Scanner input = new Scanner(file); // open the fil e

Output:

Type a file name to use: hourz.text
File not found! Try again: h0urz.txt
File not found! Try again: hours.txt

39

IMDB movie ratings problem

� Consider the following Internet Movie Database (IMDB) Top-250
data from a text file in the following format:
1 196376 9.1 Shawshank Redemption, The (1994)

2 93064 8.9 Godfather: Part II, The (1974)

3 81507 8.8 Casablanca (1942)

� Write a program that prompts the user for a search phrase and
displays any movies that contain that phrase.

This program will allow you to search the

IMDB top 250 movies for a particular word.

search word? kill

Rank Votes Rating Title

40 37815 8.5 To Kill a Mockingbird (1962)

88 89063 8.3 Kill Bill: Vol. 1 (2003)

112 64613 8.2 Kill Bill: Vol. 2 (2004)

128 9149 8.2 Killing, the (1956)

4 matches.

40

Graphical IMDB problem

� Consider making this a graphical program.
Expected appearance:
� top-left tick mark at (20, 20)
� ticks 10px tall, 50px apart
� first red bar t/l corner at (20, 70)
� 100px apart vertically (max of 5)
� 1px tall per 5000 votes
� 50px wide per rating point

41

Mixing graphical, text output

� When solving complex file I/O problems with a mix of
text and graphical output, attack the problem in pieces.

Do the text input/output and file I/O first:

� Handle any welcome message and initial console input.

� Write code to open the input file and print some of the file's
data. (Perhaps print the first token of each line, or print all
tokens on a given line.)

� Write code to process the input file and retrieve the record
being searched for.

� Produce the complete and exact text output.

Next, begin the graphical output:

� First draw any fixed items that do not depend on the user input
or file results.

� Lastly draw the graphical output that depends on the search
record from the file.

42

More with lines and tokens

43

Mixing line-based with tokens

� It is not generally recommended to use nextLine in combination

with the token-based methods, because confusing results occur.
23 3.14
Joe "Hello world"

45.2 19

int n = console.nextInt(); // 23
23\t3.14\nJoe\t"Hello world"\n\t\t45.2 19\n
^

double x = console.nextDouble(); // 3.14
23\t 3.14\nJoe\t"Hello world"\n\t\t45.2 19\n

^

// receives an empty line!
String line = console.nextLine(); // ""
23\t3.14\nJoe\t"Hello world"\n\t\t45.2 19\n

^
// Calling nextLine again will get the following co mplete line
String line2 = console.nextLine(); // "Joe\t\"Hel lo world\""
23\t3.14\n Joe\t"Hello world"\n\t\t45.2 19\n

^

44

Line-and-token example

� Here's another example of the confusing behavior:
Scanner console = new Scanner(System.in);
System.out.print("Enter your age: ");
int age = console.nextInt();
System.out.print("Now enter your name: ");
String name = console.nextLine();
System.out.println(name + " is " + age + " years ol d.");

Log of execution (user input underlined):
Enter your age: 12
Now enter your name: Marty Stepp

is 12 years old.

� Why?
� User's overall input: 12\nMarty Stepp
� After nextInt(): 12\nMarty Stepp

^
� After nextLine(): 12\nMarty Stepp

^

45

Complex multi-line records

� Sometimes the data consists of multi-line records.
� The following data represents students' courses.

� Each student's record has the following format:

� Name

� Credits Grade Credits Grade Credits Grade ...

Erica Kane
3 2.8 4 3.9 3 3.1
Greenlee Smythe
3 3.9 3 4.0 4 3.9
Ryan Laveree
2 4.0 3 3.6 4 3.8 1 2.8
Adam Chandler
3 3.0 4 2.9 3 3.2 2 2.5
Adam Chandler, Jr
4 1.5 5 1.9

� How can we process one or all of these records?

46

File output using PrintStream

� suggested reading: 6.4

47

Output to files

� PrintStream: An object in the java.io package that

lets you print output to a destination such as a file.

� System.out is also a PrintStream .

� Any methods you have used on System.out
(such as print , println) will work on every PrintStream .

� Printing into an output file, general syntax:
PrintStream <name> =

new PrintStream(new File(" <file name>"));

...

� If the given file does not exist, it is created.

� If the given file already exists, it is overwritten.

48

Printing to files, example

� Example:
PrintStream output = new PrintStream(new File("output .txt"));

output.println("Hello, file!");

output.println("This is a second line of output.");

� You can use similar ideas about prompting for file names here.

� Do not open a file for reading (Scanner) and writing
(PrintStream) at the same time.

� The result can be an empty file (size 0 bytes).

� You could overwrite your input file by accident!

