Building Java Programs

Chapter 8:
Classes

These lecture notes are copyright (C) Marty Stepp and Stuart Reges, 2007. They may not be
rehosted, sold, or modified without expressed permission from the authors. All rights reserved.

1

q Chapter outline P

|
Lecture 21

= objects, classes, object-oriented programming

= object fields
= instance methods

L ecture 22

= constructors
= encapsulation

= preconditions, postconditions, and invariants

Lecture 23
= special methods: toString and equals

= the keyword this

q Classes, types, and objects

|
= class:

1. A file that can be run as a program, containing static methods
and global constants.

2. A template for a type of objects.

= We can write Java classes that are not programs in
themselves, but instead define of new types of objects.
= We can use these objects in our programs if we so desire.

= Why would we want to do this?

q Objects and "OOP"

I
object: An encapsulation of data and behavior.

object-oriented programming (OOP): Writing
programs that perform most of their useful behavior
through interactions with objects.

So far, we have interacted with objects such as:
String

Point

Scanner

DrawingPanel

Graphics

Color

Random

File

PrintStream

P

Abstraction

= abstraction: A distancing between ideas and details.

= The objects in Java provide a level of abstraction, because we can use
them without knowing how they work.

= You use abstraction every day when interacting with technological
objects such as a portable music player.

= You understand its external behavior
(volume knobs/buttons, station/song wheel, etc.)

= You DON'T understand its inner workings.

Bl

re4 e
8508 10 22K
.)
2 2N3394
m

AMP

— dl/j' MeaSNEe"" 28

Registor Voltage
Here Here

Factory/blueprint analogy

In real life, a factory can create many similar objects.
« This is also like following a blueprint.

Music player factory
state: # of players made

behavior: directions on how to build a music player

Music player #1

state:
station/song,
volume, battery life

behavior:
power on/off
change station/song
change volume
choose random song

creates

Music player #2

state:
station/song,
volume, battery life

behavior:
power on/off
change station/song
change volume
choose random song

Music player #3

state:
station/song,
volume, battery life

behavior:
power on/off
change station/song
change volume
choose random song

q Recall: Point objects

I
= Java has a class of objects named Point

= [0 use Point , you must write: import java.awt.*;

= Constructing a Point object, general syntax:
Point <name> = new Point(<x> <y>);
Point <name> = new Point(); // the origin, (0O, O)
= Example:
Point p1 = new Point(5, -2);
Point p2 = new Point(); // 0, 0

= Point objects are useful for several reasons:

= They store two values, an (X, y) pair, in a single variable.
= They have useful methods we can call in our programs.

q Recall: Point data/methods ?

= Data stored in each Point object:
Field name Description
X the point's x-coordinate
y the point's y-coordinate

= Useful methods of each Point object:

Method name Description

distance(p) how far away the point is from point p

setLocation(X, y) |sets the point's x and y to the given values

translate(dx, dy) |adjusts the point's x and y by the given amounts

= Point objects can also be printed using printin statements:
Point p = new Point(5, -2);
System out. println(p); /I java.awt.Point[x=5,y=-2] :

q A Point class
|

The Point class might look something like this:

= Each object contains its own data and methods.
= The class has the instructions for how to construct individual objects.

Point class
public Point()
public Point(int x, int y)

Point object #1

state:
intx, y

behavior:
distance(Point p)
equals(Point p)
setLocation(int x, int y)
toString()
translate(int dx, int dy)

allows
construction of

Point object #2

state:
intx, y

behavior:
distance(Point p)
equals(Point p)

toString()

setLocation(int x, int y)

translate(int dx, int dy)

Point object #3

state:
intx, y

behavior:
distance(Point p)
equals(Point p)
setLocation(int x, int y)
toString()
translate(int dx, int dy)

Object state:

!'_ fields

= suggested reading: 8.2

10

P

q Point class, version 1

I
= The following code creates a new class of objects
named Point

public class Point {
Int X;
Inty;

We'd save this code into a file named Point.java

= Each object contains two pieces of data:
anint named x,
anint namedy.

= Point objects (so far) do not contain any behavior.

11

q Fields 3

I
= field: A variable inside an object that represents part

of the internal state of the object.
= Each object will have its own copy of the data fields we declare.

= Declaring a field, general syntax:
<type> <name> ,

or, to declare a field and give it an initial value:
<type> <name> = <value> ;

= Examples:
public class Student {
String nane; // each student object has a
doubl e gpa; // name and gpa data field

12

q Accessing fields

I
Code in another class can access your object's fields

(for now).

Accessing a data field, general syntax:
<variable name> . <field name>

Modifying a data field, general syntax:
<variable name> . <field name> = <value> ;

Examples:
System.out.printin("the x-coord is" + pl. x); // access
p2.y = 13; [/ modify

P

=« Later in this chapter, we'll learn about encapsulation, which will

change the way we access the data inside objects.

13

P

q Client code
|

= client code: Code that uses an object.

= The following code (stored in PointMain.java) uses our Point class.

public class PointMain {
public static void main(String[] args) {
// create two Point objects
Point pl = new Poi nt ();
pl. x =5;
pl.y =2;
Point p2 = new Point();
p2. x =4;
p2.y =3;

// print each point
System.out.printin("pl is (" + pl.x +" "+ pl.y +")%);
System.out.printin("p2 is (" + p2.x +", "+ p2.y +%)

// move p2 and then print it again

p2. X +=2;

p2.y +=4;

System.out.printin("p2 is (" + p2.x +" "+ p2.y +")");

}
}
OUTPUT:
plis (5, 2)

p2is (4, 3)
p2 IS (6, 7) 14

P

= Write a client program that uses our new Point class to
produce the following output:
plis (7, 2)
pl's distance from origin = 7.280109889280518
p2is (4, 3)
p2's distance from origin = 5.0
plis (18, 8)
p2is (5, 10)

q Client code question
I

= Recall that the formula to compute distance between two points
(Xll yl) and (XZI y2) IS:

\/(Xz - X1)2 + (yz - yl)2

15

Object behavior:

!'_ instance methods

= suggested reading: 8.3

16

q Client code redundancy 3
I

= Our client program had code such as the
following to translate a Point object's location.

// move p2 and then print it again

p2. X +=2;

p2.y +=4;

System.out.printin("p2 is (" + p2.x +", "+ p2.y +")");

= If we translate several points, the above code

would be redundantly repeated several times in
the client program.

17

P

q Eliminating redundancy, vl
I

= We could eliminate the redundancy with a
static method in the client for translating point
coordinates:

// Shifts the location of the given point.

public static void translate(Point p, int dx, int dy)4
pP.X +=dx;
\ p.y +=dy;

= Why doesn't the method need to return the modified point?

= The client would call the method as follows:

// move p2 and then print it again
transl ate(p2, 2, 4);
System.out.printin("p2 is (" + p2.x + ", " + p2.y + e

18

q Classes with behavior ?

I
= The static method solution isn't a good idea:

= The call syntax doesn't match the way we're used to interacting
with objects.

translate(p2, 2, 4);

= The whole point of writing classes is to put related state and
behavior together. This behavior is closely related to the x/y
data of the Point object, so it belongs in the Point class.

= The objects we've used contain behavior inside them.

= When we wanted to use that behavior, we called a method of
the object using the dot notation.

// move p2 and then print it again
p2.transl ate(2, 4);
System.out.printin("p2 is (" + p2.x + ", " + p2.y + "),

= In this section, we'll see how to add methods to our

Point objects. =

q Instance methods ?

I
= instance method: a method (without the static

keyword) that defines the behavior for each object.
= The object can refer to its own fields or methods as necessary.

= Declaring an object's method, general syntax:
public <type> <name> (<parameter(s)>){
<statement(s)> ;

}

= Example (this code appears inside the Point class):
public void translate(int dx, int dy) {

}

20

q Point object diagrams

= Think of each Point object as having its own copy of the

translate method, which operates on that object's state:
Point p1 = new Point();

P

pl.x =7;
ply = 2;
Point p2 = new Point();
pP2.X = 4;
p2.y = 3; x| 7 y| 2
public void translate(int dx, int dy) {
pl
}
X| 4 y| 3
public void translate(int dx, int dy) {
p2
}

NJ

q The implicit parameter 3

I
= Implicit parameter: The object on which an instance

method is called.
=« Each instance method call happens on a particular object:

During the call pl.translate(11, 6); ,
the object referred to by pl is the implicit parameter.
During the call p2.translate(1, 7);)

the object referred to by p2 is the implicit parameter.

= The instance method can refer to that object's fields.
(We sometimes say that instance method code operates in the
context of a particular object on each call.)

= Therefore the complete translate method should be:
public void translate(int dx, int dy) {
X += dXx;

y += dy;

22

P

q Tracing instance method calls
I

= What happens when the following calls are made?
pl.translate(11, 6);

p2.translate(1, 7);

X| 3 y| 8
public void translate(int dx, int dy) {
p1 , X += dx;
y += dy;
}
X| 4 y| 3
public void translate(int dx, int dy) {
p2 , X += dx;
y += dy;
}
23

P

q Point class, version 2

I
= This second version of Point gives a method named

translate to each Point object:

public class Point {
Nt X;
Inty;

/'l Changes the | ocation of this Point object.
public void translate(int dx, int dy) {
X += dx;

y += dy;

}

= Each Point object now contains one method of behavior, which
modifies its x and y coordinates by the given parameter values.

24

q Instance method questions
I

Write an instance method named distanceFromOrigin that
computes and returns the distance between the current Point

object and the origin, (0, 0).

Use the following formula:

\/(Xz B X1)2 + (yz - y1)2

Write an instance method named distance that accepts a Point

as a parameter and computes the distance between it and the
current Point . Use the same formula above.

Write an instance method named setLocation that accepts x and
y values as parameters and changes the Point 's location to be

those values.
= You may wish to refactor the rest of your Point class to use this method.

Modify the client code to use these new methods as appropriate.
25

P

q Accessors and mutators

I
Two common categories of instance methods:

= accessor:. A method that provides access to

information about an object.
= Generally the information comes from (or is computed using)
the object's state stored in its fields.
= The distanceFromOrigin and distance methods are examples

of accessors.

= mutator: A method that modifies the state of an

object in some way.
= Sometimes the modification is based on parameters that are
passed to the mutator method, such as the translate method

with parameters for dx and dy.
= [he translate and setLocation methods are examples of

mutators. 26

q Client code, version 2
I

= The following client code (stored in PointMain2.java
uses our modified Point

public class PointMain2 {
public static void main(String[] args) {

}
}
OUTPUT:
plis (5, 2)
p2is (4, 3)
p2is (6, 7)

Il create two Point objects
Point p1 = new Point();
pl.x =5;

ply=2;

Point p2 = new Point();
p2.x = 4;

p2.y =3;

// print each point

System.out.printin("plis (" + p1l.x+""
System.out.printin("p2 is (" + p2.x +", "

// move p2 and then print it again
p2.transl ate(2, 4);
System.out.printin("p2 is (" + p2.x +

class:

~—
~—

)"

P

27

q Client code question 3

I
= Recall our client program that produces this output:

plis (7, 2)

pl's distance from origin = 7.280109889280518
p2is (4, 3)

p2's distance from origin = 5.0

plis (18, 8)

p2is (5, 10)

= Modify the program to use our new instance methods.

Also add the following output to the program:
distance from pl to p2 = 3.1622776601683795

28

P

q Lecture outline

|
Lecture 21

= Objects, classes, and object-oriented programming

= object fields
= instance methods

Lecture 22
= constructors
= encapsulation

=« preconditions, postconditions, and invariants

Lecture 23
= special methods: toString and equals

= the keyword this

29

Object initialization:

!'_ constructors

= suggested reading: 8.4

30

q Initializing objects 3

I
It is tedious to have to construct an object and assign

values to all of its data fields manually.

Point p = new Point();
p.X =3;
p.y = 8; // tedious

We'd rather be able to pass in the fields' values as
parameters, as we did with Java's built-in Point class.

Point p = new Point(3, 8); // better!

To do this, we need to learn about a special type of
method called a constructor.

31

q Constructors ?

I
= constructor: A special method that initializes the state

of new objects as they are created.

= Constructors may accept parameters to initialize the object.

= A constructor doesn't specify a return type (not even void)
because it implicitly returns a new Point object.

= Constructor syntax:
public <type> (<parameter(s)>) {
<statement(s)> ;

}

= Example:
public Point(int initialX, int initialY) {

}

32

P

q Point class, version 3

I
= This third version of the Point class provides a

constructor to initialize Point objects:
public class Point {

Nt X;

Inty;

public Point(int initialX int initialY) {
X = initialX;
y = initial,

}

public void translate(int dx, int dy) {
X += dXx;
y +=dy;

}

33

q Tracing constructor calls
I

= What happens when the following call is made?

Point p1 = new Point(7, 2);

P

")

X y
public Point(int initialX, int initialY) {
X = initialX;
y = initialY;
public void translate(int dx, int dy) {
X += dx;
y += dy;

q Client code, version 3
I

= The following client code (stored in PointMain3.java

uses our Point constructor:

public class PointMain3 {
public static void main(String[] args) {

}

OUTPUT:
plis (5, 2)
p2is (4, 3)
p2is (6, 7)

I/ create two Point objects
Point pl =
Poi nt p2 =
// print each point

System.out.printin("plis (" + pl.x +
System.out.printin("p2 is (* + p2.x +

// move p2 and then print it again
p2.translate(2, 4);
System.out.printin("p2 is (" + p2.x +

new Poi nt (5, 2);
new Point (4, 3);

St ply +
L+ p2y +

Lt p2y +

~— —
~— —

")),

P

35

q Client code question 3

I
= Recall our client program that produces this output:

plis (7, 2)

pl's distance from origin = 7.280109889280518
p2is (4, 3)

p2's distance from origin = 5.0

plis (18, 8)

p2is (5, 10)

= Modify the program to use our new constructor.

36

!'_ Encapsulation

= suggested reading: 8.5

37

P

Encapsulation

= encapsulation: Hiding the implementation details of an object
from the clients of the object.

= Specifically, this means protecting the object's fields from modification
by clients.

= Encapsulating objects provides abstraction, because we can use
them without knowing how they work. The object has:

= an external view (its behavior)
= an internal view (the state that accomplishes the behavior)

—3
Lem
T e Rg3
. 100 2%

Qo
gu 4’% 2 283394
40310 AmP

Jubio oTPUT

4’ Measure-—"r

Registor Voltage .s':i
Here Here !

. 38

q Implementing encapsulation

I
= Fields can be declared private to indicate that no code

outside their own class can change them.

=« Declaring a private field, general syntax:
private <type> <name> ,

= Examples:
private int x;
private String name,;

= Once fields are private, client code cannot directly
access them. The client receives an error such as:

PointMain.java:11: x has private access in Point
System.out.printin("pl is (" + plx +" "+ pl.y =p=SiE)

N

39

q Encapsulation and accessors

I
= Once fields are private, we often provide accessor

methods to examine their values:
public int getX() {
return X,

}

= This gives clients "read-only" access to the object's fields.

= If so desired, we can also provide mutator methods:
public void setX(int newX) {
X = newxX;

}

= Question: Is there any difference between a public field and a
private field with a get and set method?

40

q Benefits of encapsulation

I
= Encapsulation helps provide a clean layer of abstraction

between an object and its clients.

= Encapsulation protects an object from unwanted access
by clients.

= For example, perhaps we write a program to manage users'
bank accounts. We don't want a malicious client program to be
able to arbitrarily change a BankAccount object's balance.

= Encapsulation allows the class author to change the
internal representation later if necessary. \
= For example, if so desired, the Point class could (-.)

be rewritten to use polar coordinates (a radius r
and an angle 6 from the origin), but the external ;

view could remain the same. g

P

q Point class, version 4

/l A Point object represents an (X, y) location.
public class Point {

private int x;

private int y;

public Point(int initialX, int initialY) {
X = initialX;
y = initialY;

}

public double distanceFromOrigin() {
return Math.sqrt(x * X +y *vy);

}

public int getX() {
return x;

}

public int getY() {
return vy;

}

public void setLocation(int newX, int newyY) {
X = newxX;
Yy = newy,;

}

public void translate(int dx, int dy) {
X += dx;

} y +=dy;

M waskingTon

Preconditions, postconditions,

!'_ and invariants

= suggested reading: 8.6

43

q Pre/postconditions
I
= precondition: Something that you expect / assume to
be true when your method is called.

= postcondition: Something you promise to be true

when your method exits.

= Pre/postconditions are often documented as comments on
method headers.

= Example:
I/ Sets this Point's location to be the given (X, y).

[/ Precondition: newX >= 0 && newY >= 0
[/ Postcondition: x >0 & y >= 0
public void setLocation(int newX, int newY) {

X = newxX;

Yy = newy,

44

q Class invariants
I
= class invariant: An assertion about an object's state
that is true throughout the lifetime of the object.

= An invariant can be thought of as a postcondition on every
constructor and mutator method of a class.

= Example: "No BankAccount object's balance can be negative."
« Example: "The speed of a SpaceShip object must be < 10."

= Example: Suppose we want to ensure that all Point

objects' x and y coordinates are never negative.

= We must ensure that a client cannot construct a Point object
with a negative x or y value.

= We must ensure that a client cannot move an existing Point
object to a negative (x, y) location.

45

P

q Violated preconditions
I

= What if your precondition is not met?

= Sometimes the client passes an invalid value to your method.

= Example:
Point pt = new Point(5, 17);
Scanner console = new Scanner(System.in);
System.out.print("Type the coordinates: ");
Int X = console.nextint(); /1 what 1f the user types
Int y = console.nextint(); /'l a negative nunber?
pt.setLocation(x, VY);

= How can we prevent the client from misusing our object in this
way?

46

q Dealing with violations 3

I
= One way to deal with this problem would be to return

out of the method if negative values are encountered.

= However, it is not possible to do something similar in the
constructor, and the client doesn't expect this behavior.

= A more common solution is to have your object
throw an exception.

= exception: A Java object that represents an error.

= When a precondition of your method has been violated, you can
generate ("throw") an exception in your code.

= This will cause the client program to halt.
(That'll show 'em!)

47

q Throwing exceptions example

I
= Throwing an exception, general syntax:

throw new <exception type> ();
or, throw new <exception type> (" <message>");

= The <message> will be shown on the console when the
program crashes.

= Example:
I/ Sets this Point's location to be the given (X, y).
I/l Throws an exception if newX or newY Is negative.
[/ Postcondition: x >0 & y >= 0
public void setLocation(int newX, int newyY) {
If (newX <0 || newY <O0){

t hrow new | | | egal Argunent Excepti on();
}
X = newxX;
Yy = newy;

48

q Encapsulation and invariants

I
Encapsulation helps you enforce invariants.

= Ensure that no Point is constructed with negative x or y:
public Point(int initialX, int initialY) {

1f (initial X <O || initialY < 0)

\ t hrow new | | | egal Argunent Excepti on();
X = initialX;

y = InitialY;

}

= Ensure that no Point can be moved to a negative x or y:
public void translate(int dx, int dy) {
1f (x +dx <0 || vy + dy < 0)
\ t hrow new | | | egal Argunent Excepti on();

X += dx;
\ y +=dy;

= Other methods require similar modifications.

49

P

q Lecture outline

|
Lecture 21

= Objects, classes, and object-oriented programming

= object fields
= instance methods

L ecture 22

= constructors
= encapsulation

= preconditions, postconditions, and invariants

Lecture 23
= special methods: t 0Stri ng and equal s

= the keyword t hi s

50

M waskingTon

Special instance methods:

!'_ toString and equals

= suggested reading: 8.6

51

q Problem: object printability 3

I
= By default, Java doesn't know how to print the state of

your objects, so it prints a strange result:
Point p = new Point(10, 7);
System.out.printin("p is" + p); // pis Point@9e8c 34

= We can instead print a more complex string that shows
the object's state, but this is cumbersome.
System.out.printin("(" + p.x+","+ p.y +")");

= We'd like to be able to print the object itself and have

something meaningful appear.
/[desired behavior:

System.out.printin("p is" +p); // pis (10, 7)

52

q The toString method
I
= The special method toString tells Java how to convert
your object into a String as needed.

= The toString method is called when your object is printed or
concatenated with a String

Point p1 = new Point(7, 2);

System.out.printin("pl is " + pl);
« If you prefer, you can write the .toString() explicitly.
System.out.printin("plis " + pl.toString());

= Every class contains a toString method, even if it isn't
written in your class's code.

= The default toString behavior is to return the class's name
followed by a hexadecimal (base-16) number:

Point@9e8c34

53

q toString method syntax P

I
= You can replace the default behavior by defining an
appropriate toString method in your class.
« Example: The Point class in java.awt has a toString method

that converts a Point into a String such as:
"Java.awt.Point[x=7,y=2]"

= ThetoString method, general syntax:
public String toString() {
<statement(s) that return an appropriate String>

}

= The method must have this exact name and signature.

= Example:
// Returns a String representing this Point.
public String toString() {
return "("+x+", " +y+")"

] 54

P

q Recall: comparing objects

I
= The == operator does not work well with objects.
« == compares references to objects and only evaluates to true if
two variables refer to the same object.
It doesn't tell us whether two objects have the same state.
= Example:
Point p1 = new Point(5, 3);
Point p2 = new Point(5, 3);
f(pl == p2){/ fal se
System.out.printin("equal");

}

pl

55

q The equals method 3

I
= The equals method compares the state of objects.

= When we write our own new classes of objects, Java doesn't
know how to compare their state.

= The default equals behavior acts just like the == operator.

if(pl.equal s(p2)){ / still false
System.out.printin("equal");

}

= We can replace this default behavior by writing an
equals method.

= The method will actually compare the state of the two objects
and return true for cases like the above.

56

q Initial flawed equals method 3

I
= You might think that the following is a valid

implementation of the equals method:
public boolean equals(Point other) {
If (x == other.x && y == other.y) {
return true;
} else {
return false;

}
}

= However, it has several flaws that we should correct.

= One initial flaw: the body can be shortened to:
return X == other.x && y == other.y;

57

N equals and the Object class

= A proper equals method does not accept a parameter
of type Point

=« It should be legal to compare Point objects to any other type

of objects, such as:
Point p = new Point(7, 2);
if(p.equals("hello")){ //false

}

= The equals method, general syntax:
public boolean equals(Object <name>){
<statement(s) that return a boolean value> ;

}

= The parameter to a proper equals method must be of type
Object (which means that any object of any type can be

passed as the parameter).

58

P

q Another flawed version

I
= You might think that the following is a valid

implementation of the equals method:
public boolean equals(Object 0) {
If (x==0.x && Yy ==0.y){
return true;
} else {
return false;

}
}

= However, it does not compile.
Point.java:36: cannot find symbol
symbol : variable x
location: class java.lang.Object
If (X == 0.X &&Yy== o0y){

N
59

q Type-casting objects 3
I

= The object that is passed to equals can be cast from
Object into your class's type.

= Example:
public boolean equals(Object 0) {
Point other = (Point) o;
return x == other.x && y == other.y;

= Type-casting with objects behaves differently than
casting primitive values.

= We are really casting a reference of type Object into a
reference of type Point .

= We're promising the compiler that o refers to a Point object.

60

q Casting objects diagram

= Client code:
Point p1 = new Point(5, 3);
Point p2 = new Point(5, 3);

pl. equal s(p2)){
System.out.printin("equal®);

if (
}

P

X

public boolean equals(Object 0) {

5

Point other = (Point) o;

y

3

other

return X == other.x && y == other.y;

0)

61

q Comparing different types 3

I
= Our equals code still is not complete.

= When we compare Point objects to any other type of objects,
Point p = new Point(7, 2);
if(p.equals("hello")){ //false

}

= Currently the code crashes with the following exception:
Exception in thread "main"

java.lang.ClassCastException: java.lang.String
at Point.equals(Point.java:25)
at PointMain.main(PointMain.java:25)

= The culprit is the following line that contains the type-cast:
public boolean equals(Object 0) {

Point other = (Point) o; 62

P

q The instanceof keyword
I

= We can use a keyword called instanceof to ask

whether a variable refers to an object of a given type.
= The instanceof @ keyword, general syntax:
<variable> instanceof <type>

= The above is a boolean expression that can be used as the test
in an if statement.

= Examples: '
String s = "hello”; expression result
Point p = S instanceof Point false
new Point(7, 2); s instanceof String true
p instanceof Point true
p instanceof String false
null instanceof String false -

P

q Final version of equals method

I
= This version of the equals method allows us to

correctly compare Point objects against any other type
of object:

// Returns whether o refers to a Point object with
// the same (X, y) coordinates as this Point object
public boolean equals(Object 0) {
| f (o I nstanceof Point) {
Point other = (Point) o;
return x == other.x && y == other.y;
} else {
return fal se;

64

!'_ The keyword this

= suggested reading: 8.7

65

q Using the keyword this ?

I
= The this keyword is a reference to the implicit

parameter (the object on which an instance method or
constructor is being called).

= Usage of the this keyword, general syntax:

= 10 refer to a field:
this. <field name>

= 10 refer to a method:
this. <method name>(<parameters>);

= 10 call a constructor from another constructor:
this(<parameters>);

66

q Variable shadowing 3

I
= shadowed variable: A field that is "covered up" by a

local variable or parameter with the same name.

= Normally it is illegal to have two variables in the same scope
with the same name, but in this case it is allowed.

= T0 avoid shadowing, we named our setLocation parameters
newX and newyY:

public void setLocation(int newxX, int newy) {
f(newX <O0|| newY <0){
throw new lllegalArgumentException();
}
X= newxX
Yy = newy,

67

q Avoiding shadowing with this.9

I
= Thethis keyword lets us use the same names and still

avoid shadowing:

public void setLocation(int X, Int y) {
if(x <O y <0){
throw new lllegalArgumentException();

;o
this.x = x;
this.y =vy;

}

= When this. is not seen, the parameter is used.
= When this. is seen, the field is used.

68

q Multiple constructors 3
I

= It is legal to have more than one constructor in a class.
= The constructors must accept different parameters.

public class Point {
private int x;
private int y;

public Point() {

x = 0
y = 0;
}
public Point(int initialX, int initialY) {
X = InitialX;
y = initialY;
}

69

q Multiple constructors w/ this

I
= To avoid redundant code, one constructor may call

another using the this keyword.

= We can also use the this. field syntax so that the constructor
parameters' names can match the field names.

public class Point {
private int x;
private int y;

public Point() {

this(0, 0); /[l calls the (x, y) constructor
} \
public Point(int X, int y){

this.x = x;

this.y =vy;

/70

