
1

Building Java Programs

Chapter 8:
Classes

These lecture notes are copyright (C) Marty Stepp and Stuart Reges, 2007. They may not be
rehosted, sold, or modified without expressed permission from the authors. All rights reserved.

2

Chapter outline

Lecture 21
� objects, classes, object-oriented programming
� object fields

� instance methods

Lecture 22
� constructors
� encapsulation

� preconditions, postconditions, and invariants

Lecture 23
� special methods: toString and equals
� the keyword this

3

Classes, types, and objects

� class:

1. A file that can be run as a program, containing static methods
and global constants.

2. A template for a type of objects.

� We can write Java classes that are not programs in
themselves, but instead define of new types of objects.

� We can use these objects in our programs if we so desire.

� Why would we want to do this?

4

Objects and "OOP"

� object: An encapsulation of data and behavior.

� object-oriented programming (OOP): Writing
programs that perform most of their useful behavior
through interactions with objects.

� So far, we have interacted with objects such as:
� String
� Point
� Scanner
� DrawingPanel
� Graphics
� Color
� Random
� File
� PrintStream

5

Abstraction

� abstraction: A distancing between ideas and details.

� The objects in Java provide a level of abstraction, because we can use
them without knowing how they work.

� You use abstraction every day when interacting with technological
objects such as a portable music player.

� You understand its external behavior
(volume knobs/buttons, station/song wheel, etc.)

� You DON'T understand its inner workings.

6

Factory/blueprint analogy

� In real life, a factory can create many similar objects.

� This is also like following a blueprint.

Music player factory

state: # of players made

behavior: directions on how to build a music player

Music player #1

state:
station/song,
volume, battery life

behavior:
power on/off
change station/song
change volume
choose random song

Music player #2

state:
station/song,
volume, battery life

behavior:
power on/off
change station/song
change volume
choose random song

Music player #3

state:
station/song,
volume, battery life

behavior:
power on/off
change station/song
change volume
choose random song

creates

7

Recall: Point objects

� Java has a class of objects named Point .

� To use Point , you must write: import java.awt.*;

� Constructing a Point object, general syntax:

Point <name> = new Point(<x>, <y>);

Point <name> = new Point(); // the origin, (0, 0)

� Example:

Point p1 = new Point(5, -2);

Point p2 = new Point(); // 0, 0

� Point objects are useful for several reasons:

� They store two values, an (x, y) pair, in a single variable.

� They have useful methods we can call in our programs.

8

Recall: Point data/methods

� Data stored in each Point object:

� Useful methods of each Point object:

� Point objects can also be printed using println statements:

Point p = new Point(5, -2);

System.out.println(p); // java.awt.Point[x=5,y=-2]

how far away the point is from point pdistance(p)

adjusts the point's x and y by the given amountstranslate(dx, dy)

sets the point's x and y to the given valuessetLocation(x, y)

DescriptionMethod name

the point's y-coordinatey

the point's x-coordinatex

DescriptionField name

9

A Point class

� The Point class might look something like this:
� Each object contains its own data and methods.
� The class has the instructions for how to construct individual objects.

Point class

public Point()

public Point(int x, int y)

Point object #1

state:
int x, y

behavior:
distance(Point p)
equals(Point p)
setLocation(int x, int y)
toString()
translate(int dx, int dy)

Point object #2

state:
int x, y

behavior:
distance(Point p)
equals(Point p)
setLocation(int x, int y)
toString()
translate(int dx, int dy)

Point object #3

state:
int x, y

behavior:
distance(Point p)
equals(Point p)
setLocation(int x, int y)
toString()
translate(int dx, int dy)

allows
construction of

10

Object state:
fields

� suggested reading: 8.2

11

Point class, version 1

� The following code creates a new class of objects
named Point .

public class Point {

int x;

int y;

}

� We'd save this code into a file named Point.java .

� Each object contains two pieces of data:

� an int named x,

� an int named y.

� Point objects (so far) do not contain any behavior.

12

Fields

� field: A variable inside an object that represents part
of the internal state of the object.

� Each object will have its own copy of the data fields we declare.

� Declaring a field, general syntax:
<type> <name> ;

or, to declare a field and give it an initial value:

<type> <name> = <value> ;

� Examples:

public class Student {

String name; // each student object has a

double gpa; // name and gpa data field

}

13

Accessing fields

� Code in another class can access your object's fields
(for now).

� Accessing a data field, general syntax:
<variable name> . <field name>

� Modifying a data field, general syntax:
<variable name> . <field name> = <value> ;

� Examples:
System.out.println("the x-coord is " + p1.x); // access

p2.y = 13; // modify

� Later in this chapter, we'll learn about encapsulation, which will
change the way we access the data inside objects.

14

Client code

� client code: Code that uses an object.

� The following code (stored in PointMain.java) uses our Point class.

public class PointMain {
public static void main(String[] args) {

// create two Point objects
Point p1 = new Point();
p1.x = 5;
p1.y = 2;
Point p2 = new Point();
p2.x = 4;
p2.y = 3;

// print each point
System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

// move p2 and then print it again
p2.x += 2;
p2.y += 4;
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

}
}

OUTPUT:
p1 is (5, 2)
p2 is (4, 3)
p2 is (6, 7)

15

Client code question

� Write a client program that uses our new Point class to

produce the following output:
p1 is (7, 2)

p1's distance from origin = 7.280109889280518

p2 is (4, 3)

p2's distance from origin = 5.0

p1 is (18, 8)

p2 is (5, 10)

� Recall that the formula to compute distance between two points
(x1, y1) and (x2, y2) is:

() ()2
12

2
12 yyxx −+−

16

Object behavior:
instance methods

� suggested reading: 8.3

17

Client code redundancy

� Our client program had code such as the

following to translate a Point object's location.

// move p2 and then print it again

p2.x += 2;

p2.y += 4;

System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

� If we translate several points, the above code

would be redundantly repeated several times in

the client program.

18

Eliminating redundancy, v1

� We could eliminate the redundancy with a
static method in the client for translating point
coordinates:
// Shifts the location of the given point.
public static void translate(Point p, int dx, int dy) {

p.x += dx;
p.y += dy;

}

� Why doesn't the method need to return the modified point?

� The client would call the method as follows:
// move p2 and then print it again
translate(p2, 2, 4);
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

19

Classes with behavior

� The static method solution isn't a good idea:
� The call syntax doesn't match the way we're used to interacting
with objects.

translate(p2, 2, 4);

� The whole point of writing classes is to put related state and
behavior together. This behavior is closely related to the x/y
data of the Point object, so it belongs in the Point class.

� The objects we've used contain behavior inside them.
� When we wanted to use that behavior, we called a method of
the object using the dot notation.

// move p2 and then print it again
p2.translate(2, 4);
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

� In this section, we'll see how to add methods to our
Point objects.

20

Instance methods

� instance method: a method (without the static
keyword) that defines the behavior for each object.

� The object can refer to its own fields or methods as necessary.

� Declaring an object's method, general syntax:
public <type> <name> (<parameter(s)>) {

<statement(s)> ;

}

� Example (this code appears inside the Point class):

public void translate(int dx, int dy) {

...

}

21

� Think of each Point object as having its own copy of the
translate method, which operates on that object's state:
Point p1 = new Point();
p1.x = 7;
p1.y = 2;

Point p2 = new Point();
p2.x = 4;
p2.y = 3;

public void translate(int dx, int dy) {
...

}

Point object diagrams

2y7x

p1

public void translate(int dx, int dy) {
...

}

3y4x

p2

22

The implicit parameter

� implicit parameter: The object on which an instance
method is called.

� Each instance method call happens on a particular object:

� During the call p1.translate(11, 6); ,
the object referred to by p1 is the implicit parameter.

� During the call p2.translate(1, 7); ,
the object referred to by p2 is the implicit parameter.

� The instance method can refer to that object's fields.
(We sometimes say that instance method code operates in the
context of a particular object on each call.)

� Therefore the complete translate method should be:
public void translate(int dx, int dy) {

x += dx;

y += dy;

}

23

Tracing instance method calls

� What happens when the following calls are made?
p1.translate(11, 6);

p2.translate(1, 7);

public void translate(int dx, int dy) {
x += dx;
y += dy;

}

8y3x

p1

public void translate(int dx, int dy) {
x += dx;
y += dy;

}

3y4x

p2

24

Point class, version 2

� This second version of Point gives a method named
translate to each Point object:

public class Point {
int x;

int y;

// Changes the location of this Point object.

public void translate(int dx, int dy) {

x += dx;

y += dy;

}

}

� Each Point object now contains one method of behavior, which
modifies its x and y coordinates by the given parameter values.

25

Instance method questions

� Write an instance method named distanceFromOrigin that
computes and returns the distance between the current Point
object and the origin, (0, 0).

Use the following formula:

� Write an instance method named distance that accepts a Point
as a parameter and computes the distance between it and the
current Point . Use the same formula above.

� Write an instance method named setLocation that accepts x and
y values as parameters and changes the Point 's location to be

those values.
� You may wish to refactor the rest of your Point class to use this method.

� Modify the client code to use these new methods as appropriate.

() ()2
12

2
12 yyxx −+−

26

Accessors and mutators

Two common categories of instance methods:

� accessor: A method that provides access to
information about an object.

� Generally the information comes from (or is computed using)
the object's state stored in its fields.

� The distanceFromOrigin and distance methods are examples

of accessors.

� mutator: A method that modifies the state of an
object in some way.

� Sometimes the modification is based on parameters that are
passed to the mutator method, such as the translate method

with parameters for dx and dy.

� The translate and setLocation methods are examples of

mutators.

27

Client code, version 2

� The following client code (stored in PointMain2.java)
uses our modified Point class:

public class PointMain2 {
public static void main(String[] args) {

// create two Point objects
Point p1 = new Point();
p1.x = 5;
p1.y = 2;
Point p2 = new Point();
p2.x = 4;
p2.y = 3;

// print each point
System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

// move p2 and then print it again
p2.translate(2, 4);
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

}
}

OUTPUT:
p1 is (5, 2)
p2 is (4, 3)
p2 is (6, 7)

28

Client code question

� Recall our client program that produces this output:
p1 is (7, 2)

p1's distance from origin = 7.280109889280518

p2 is (4, 3)

p2's distance from origin = 5.0

p1 is (18, 8)

p2 is (5, 10)

� Modify the program to use our new instance methods.
Also add the following output to the program:

distance from p1 to p2 = 3.1622776601683795

29

Lecture outline

Lecture 21
� objects, classes, and object-oriented programming
� object fields

� instance methods

Lecture 22
� constructors
� encapsulation

� preconditions, postconditions, and invariants

Lecture 23
� special methods: toString and equals
� the keyword this

30

Object initialization:
constructors

� suggested reading: 8.4

31

Initializing objects

� It is tedious to have to construct an object and assign
values to all of its data fields manually.

Point p = new Point();
p.x = 3;
p.y = 8; // tedious

� We'd rather be able to pass in the fields' values as
parameters, as we did with Java's built-in Point class.

Point p = new Point(3, 8); // better!

� To do this, we need to learn about a special type of
method called a constructor.

32

Constructors

� constructor: A special method that initializes the state
of new objects as they are created.

� Constructors may accept parameters to initialize the object.

� A constructor doesn't specify a return type (not even void)
because it implicitly returns a new Point object.

� Constructor syntax:

public <type> (<parameter(s)>) {

<statement(s)> ;
}

� Example:
public Point(int initialX, int initialY) {

...

}

33

Point class, version 3

� This third version of the Point class provides a
constructor to initialize Point objects:
public class Point {

int x;
int y;

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

public void translate(int dx, int dy) {
x += dx;
y += dy;

}
}

34

Tracing constructor calls

� What happens when the following call is made?
Point p1 = new Point(7, 2);

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

public void translate(int dx, int dy) {
x += dx;
y += dy;

}

yx

p1

35

Client code, version 3

� The following client code (stored in PointMain3.java)
uses our Point constructor:

public class PointMain3 {
public static void main(String[] args) {

// create two Point objects
Point p1 = new Point(5, 2);
Point p2 = new Point(4, 3);

// print each point
System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

// move p2 and then print it again
p2.translate(2, 4);
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

}
}

OUTPUT:
p1 is (5, 2)
p2 is (4, 3)
p2 is (6, 7)

36

Client code question

� Recall our client program that produces this output:
p1 is (7, 2)

p1's distance from origin = 7.280109889280518

p2 is (4, 3)

p2's distance from origin = 5.0

p1 is (18, 8)

p2 is (5, 10)

� Modify the program to use our new constructor.

37

Encapsulation

� suggested reading: 8.5

38

Encapsulation

� encapsulation: Hiding the implementation details of an object
from the clients of the object.

� Specifically, this means protecting the object's fields from modification
by clients.

� Encapsulating objects provides abstraction, because we can use
them without knowing how they work. The object has:

� an external view (its behavior)

� an internal view (the state that accomplishes the behavior)

39

Implementing encapsulation

� Fields can be declared private to indicate that no code
outside their own class can change them.

� Declaring a private field, general syntax:

private <type> <name> ;

� Examples:

private int x;

private String name;

� Once fields are private, client code cannot directly
access them. The client receives an error such as:

PointMain.java:11: x has private access in Point

System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");

^

40

Encapsulation and accessors

� Once fields are private, we often provide accessor
methods to examine their values:

public int getX() {
return x;

}

� This gives clients "read-only" access to the object's fields.

� If so desired, we can also provide mutator methods:
public void setX(int newX) {

x = newX;
}

� Question: Is there any difference between a public field and a
private field with a get and set method?

41

Benefits of encapsulation

� Encapsulation helps provide a clean layer of abstraction
between an object and its clients.

� Encapsulation protects an object from unwanted access
by clients.

� For example, perhaps we write a program to manage users'
bank accounts. We don't want a malicious client program to be
able to arbitrarily change a BankAccount object's balance.

� Encapsulation allows the class author to change the
internal representation later if necessary.
� For example, if so desired, the Point class could

be rewritten to use polar coordinates (a radius r
and an angle θ from the origin), but the external
view could remain the same.

42

Point class, version 4
// A Point object represents an (x, y) location.
public class Point {

private int x;
private int y;

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

public double distanceFromOrigin() {
return Math.sqrt(x * x + y * y);

}

public int getX() {
return x;

}

public int getY() {
return y;

}

public void setLocation(int newX, int newY) {
x = newX;
y = newY;

}

public void translate(int dx, int dy) {
x += dx;
y += dy;

}
}

43

Preconditions, postconditions,
and invariants

� suggested reading: 8.6

44

Pre/postconditions

� precondition: Something that you expect / assume to
be true when your method is called.

� postcondition: Something you promise to be true
when your method exits.
� Pre/postconditions are often documented as comments on
method headers.

� Example:

// Sets this Point's location to be the given (x, y).

// Precondition: newX >= 0 && newY >= 0

// Postcondition: x >= 0 && y >= 0

public void setLocation(int newX, int newY) {

x = newX;

y = newY;

}

45

Class invariants

� class invariant: An assertion about an object's state
that is true throughout the lifetime of the object.

� An invariant can be thought of as a postcondition on every
constructor and mutator method of a class.

� Example: "No BankAccount object's balance can be negative."

� Example: "The speed of a SpaceShip object must be ≤ 10."

� Example: Suppose we want to ensure that all Point
objects' x and y coordinates are never negative.
� We must ensure that a client cannot construct a Point object

with a negative x or y value.

� We must ensure that a client cannot move an existing Point
object to a negative (x, y) location.

46

Violated preconditions

� What if your precondition is not met?

� Sometimes the client passes an invalid value to your method.

� Example:

Point pt = new Point(5, 17);

Scanner console = new Scanner(System.in);

System.out.print("Type the coordinates: ");

int x = console.nextInt(); // what if the user types

int y = console.nextInt(); // a negative number?

pt.setLocation(x, y);

� How can we prevent the client from misusing our object in this
way?

47

Dealing with violations

� One way to deal with this problem would be to return
out of the method if negative values are encountered.

� However, it is not possible to do something similar in the
constructor, and the client doesn't expect this behavior.

� A more common solution is to have your object
throw an exception.

� exception: A Java object that represents an error.

� When a precondition of your method has been violated, you can
generate ("throw") an exception in your code.

� This will cause the client program to halt.
(That'll show 'em!)

48

Throwing exceptions example

� Throwing an exception, general syntax:
throw new <exception type> ();

or, throw new <exception type> (" <message>");

� The <message> will be shown on the console when the
program crashes.

� Example:
// Sets this Point's location to be the given (x, y).
// Throws an exception if newX or newY is negative.
// Postcondition: x >= 0 && y >= 0
public void setLocation(int newX, int newY) {

if (newX < 0 || newY < 0) {
throw new IllegalArgumentException();

}

x = newX;
y = newY;

}

49

Encapsulation and invariants

Encapsulation helps you enforce invariants.
� Ensure that no Point is constructed with negative x or y:

public Point(int initialX, int initialY) {
if (initialX < 0 || initialY < 0) {

throw new IllegalArgumentException();
}

x = initialX;
y = initialY;

}

� Ensure that no Point can be moved to a negative x or y:
public void translate(int dx, int dy) {

if (x + dx < 0 || y + dy < 0) {
throw new IllegalArgumentException();

}

x += dx;
y += dy;

}

� Other methods require similar modifications.

50

Lecture outline

Lecture 21
� objects, classes, and object-oriented programming
� object fields

� instance methods

Lecture 22
� constructors
� encapsulation

� preconditions, postconditions, and invariants

Lecture 23
� special methods: toString and equals
� the keyword this

51

Special instance methods:
toString and equals

� suggested reading: 8.6

52

Problem: object printability

� By default, Java doesn't know how to print the state of
your objects, so it prints a strange result:
Point p = new Point(10, 7);

System.out.println("p is " + p); // p is Point@9e8c 34

� We can instead print a more complex string that shows
the object's state, but this is cumbersome.
System.out.println("(" + p.x + ", " + p.y + ")");

� We'd like to be able to print the object itself and have
something meaningful appear.
// desired behavior:

System.out.println("p is " + p); // p is (10, 7)

53

The toString method

� The special method toString tells Java how to convert
your object into a String as needed.

� The toString method is called when your object is printed or
concatenated with a String .

Point p1 = new Point(7, 2);
System.out.println("p1 is " + p1);

� If you prefer, you can write the .toString() explicitly.

System.out.println("p1 is " + p1.toString());

� Every class contains a toString method, even if it isn't

written in your class's code.
� The default toString behavior is to return the class's name
followed by a hexadecimal (base-16) number:

Point@9e8c34

54

toString method syntax

� You can replace the default behavior by defining an
appropriate toString method in your class.

� Example: The Point class in java.awt has a toString method
that converts a Point into a String such as:
"java.awt.Point[x=7,y=2]"

� The toString method, general syntax:
public String toString() {

<statement(s) that return an appropriate String> ;

}

� The method must have this exact name and signature.

� Example:
// Returns a String representing this Point.

public String toString() {

return "(" + x + ", " + y + ")";
}

55

Recall: comparing objects

� The == operator does not work well with objects.

� == compares references to objects and only evaluates to true if

two variables refer to the same object.

� It doesn't tell us whether two objects have the same state.

� Example:
Point p1 = new Point(5, 3);
Point p2 = new Point(5, 3);
if (p1 == p2) { // false

System.out.println("equal");
}

...

3y5x
p1

p2

...

3y5x

56

The equals method

� The equals method compares the state of objects.

� When we write our own new classes of objects, Java doesn't
know how to compare their state.

� The default equals behavior acts just like the == operator.

if (p1.equals(p2)) { // still false
System.out.println("equal");

}

� We can replace this default behavior by writing an
equals method.

� The method will actually compare the state of the two objects
and return true for cases like the above.

57

Initial flawed equals method

� You might think that the following is a valid
implementation of the equals method:

public boolean equals(Point other) {

if (x == other.x && y == other.y) {

return true;

} else {

return false;

}

}

� However, it has several flaws that we should correct.

� One initial flaw: the body can be shortened to:
return x == other.x && y == other.y;

58

equals and the Object class

� A proper equals method does not accept a parameter
of type Point .

� It should be legal to compare Point objects to any other type

of objects, such as:
Point p = new Point(7, 2);
if (p.equals("hello")) { // false

...
}

� The equals method, general syntax:

public boolean equals(Object <name>) {

<statement(s) that return a boolean value> ;

}

� The parameter to a proper equals method must be of type
Object (which means that any object of any type can be

passed as the parameter).

59

Another flawed version

� You might think that the following is a valid
implementation of the equals method:

public boolean equals(Object o) {

if (x == o.x && y == o.y) {

return true;

} else {

return false;

}

}

� However, it does not compile.
Point.java:36: cannot find symbol
symbol : variable x
location: class java.lang.Object
if (x == o.x && y == o.y) {

^

60

Type-casting objects

� The object that is passed to equals can be cast from
Object into your class's type.

� Example:
public boolean equals(Object o) {

Point other = (Point) o;
return x == other.x && y == other.y;

}

� Type-casting with objects behaves differently than
casting primitive values.
� We are really casting a reference of type Object into a
reference of type Point .

� We're promising the compiler that o refers to a Point object.

61

Casting objects diagram

� Client code:
Point p1 = new Point(5, 3);
Point p2 = new Point(5, 3);
if (p1.equals(p2)) {

System.out.println("equal");
}

public boolean equals(Object o) {

Point other = (Point) o;

return x == other.x && y == other.y;
}

3y5x

p1

p2

...

3y5x

o

other

62

Comparing different types

� Our equals code still is not complete.

� When we compare Point objects to any other type of objects,
Point p = new Point(7, 2);
if (p.equals("hello")) { // false

...
}

� Currently the code crashes with the following exception:

Exception in thread "main"

java.lang.ClassCastException: java.lang.String

at Point.equals(Point.java:25)

at PointMain.main(PointMain.java:25)

� The culprit is the following line that contains the type-cast:
public boolean equals(Object o) {

Point other = (Point) o;

63

The instanceof keyword

� We can use a keyword called instanceof to ask

whether a variable refers to an object of a given type.
� The instanceof keyword, general syntax:

<variable> instanceof <type>

� The above is a boolean expression that can be used as the test
in an if statement.

� Examples:
String s = "hello";
Point p =

new Point(7, 2);

falsenull instanceof String

falsep instanceof String

truep instanceof Point

trues instanceof String

falses instanceof Point

resultexpression

64

Final version of equals method

� This version of the equals method allows us to
correctly compare Point objects against any other type

of object:

// Returns whether o refers to a Point object with

// the same (x, y) coordinates as this Point object .

public boolean equals(Object o) {

if (o instanceof Point) {

Point other = (Point) o;

return x == other.x && y == other.y;

} else {

return false;

}

}

65

The keyword this

� suggested reading: 8.7

66

Using the keyword this

� The this keyword is a reference to the implicit

parameter (the object on which an instance method or
constructor is being called).

� Usage of the this keyword, general syntax:

� To refer to a field:

this. <field name>

� To refer to a method:

this. <method name>(<parameters>);

� To call a constructor from another constructor:

this(<parameters>);

67

Variable shadowing

� shadowed variable: A field that is "covered up" by a
local variable or parameter with the same name.

� Normally it is illegal to have two variables in the same scope
with the same name, but in this case it is allowed.

� To avoid shadowing, we named our setLocation parameters
newX and newY:

public void setLocation(int newX, int newY) {
if (newX < 0 || newY < 0) {

throw new IllegalArgumentException();
}
x = newX;
y = newY;

}

68

Avoiding shadowing with this

� The this keyword lets us use the same names and still

avoid shadowing:

public void setLocation(int x, int y) {
if (x < 0 || y < 0) {

throw new IllegalArgumentException();
}
this.x = x;
this.y = y;

}

� When this. is not seen, the parameter is used.

� When this. is seen, the field is used.

69

Multiple constructors

� It is legal to have more than one constructor in a class.
� The constructors must accept different parameters.

public class Point {
private int x;
private int y;

public Point() {
x = 0;
y = 0;

}

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

...
}

70

Multiple constructors w/ this

� To avoid redundant code, one constructor may call
another using the this keyword.
� We can also use the this. field syntax so that the constructor
parameters' names can match the field names.

public class Point {
private int x;
private int y;

public Point() {
this(0, 0); // calls the (x, y) constructor

}

public Point(int x, int y) {
this.x = x;
this.y = y;

}

...

