
1 of 8

CSE 142, Autumn 2008
Midterm Exam, Friday, October 31, 2008

Name: ___

Section: ___________________ TA: ___________________

Student ID #: ___________________

• You have 50 minutes to complete this exam.
You may receive a deduction if you keep working after the instructor calls for papers.

• This exam is open-book/notes. You may not use any computing devices including calculators.
• Code will be graded on proper behavior/output and not on style, unless otherwise indicated.
• Do not abbreviate code, such as "ditto" marks or dot-dot-dot ... marks.

The only abbreviations that are allowed for this exam are:
� S.o.p for System.out.print,
� S.o.pln for System.out.println, and
� S.o.pf for System.out.printf.

• You do not need to write import statements in your code.
• If you enter the room, you must turn in an exam before leaving the room.
• You must show your Student ID to a TA or instructor for your exam to be accepted.

Good luck!

Score summary: (for grader only)

Problem Description Earned Max
1 Expressions 12
2 Parameter Mystery 12
3 If/Else Simulation 12
4 While Loop Simulation 15
5 Assertions 15
6 Programming 20
7 Programming 14
X Extra Credit +1

TOTAL Total Points 100

2 of 8

1. Expressions
For each expression in the left-hand column, indicate its value in the right-hand column.
Be sure to list a constant of appropriate type and capitalization.
e.g., 7 for an int, 7.0 for a double, "hello" for a String, true or false for a boolean.

Expression Value

-(6 + 3 - 2 * 3)

15 % 6 + 5 % 5 + 12 % 7 % 3

9 / 2 / 2.0 + 9 / 2.0 / 2

5 + 6 + "7" + 8 + 9 + 2 * 3

!(3 < 7 && -1 != 8)

2. Parameter Mystery
At the bottom of the page, write the output produced by the following program, as it would appear on the console.
(Though the program uses words related to arithmetic, the output does not necessarily follow the rules of addition.)

public class ParameterMystery {
 public static void main(String[] args) {
 String i = "j";
 int j = -1;
 int k = 2;
 String x = "5";
 int y = 7;

 silly(k, i, j);
 silly(y, x, k);
 silly(k, "y", 4);
 silly(j + 1, x + 1, j);
 }

 public static void silly(int k, String i, int j) {
 System.out.println(j + " + " + k + " + " + i);
 }
}

3 of 8

3. If/Else Simulation
For each call below to the following method, write the output that is produced, as it would appear on the console:

public static void ifElseMystery(int a, int b) {
 if (a < b) {
 a = a * 2;
 }
 if (a > b) {
 a = a - 10;
 } else {
 b++;
 }

 System.out.println(a + " " + b);
}

Method Call Output

ifElseMystery(10, 3);

ifElseMystery(6, 6);

ifElseMystery(3, 4);

ifElseMystery(4, 20);

__

__

__

__

4 of 8

4. While Loop Simulation
For each call below to the following method, write the output that is produced, as it would appear on the console:

public static void whileMystery(int x, int y, int z) {
 while (x < z || y < z) {
 x = x + y;
 y = y * 2;
 System.out.print(x + " " + y + " ");
 }

 System.out.println();
}

Method Call Output

whileMystery(0, 5, 10);

whileMystery(4, 2, 12);

whileMystery(10, 1, 14);

__

__

__

5 of 8

5. Assertions
For each of the five points labeled by comments, identify each of the assertions in the table below as either being
always true, never true, or sometimes true / sometimes false.

public static int randomWalk(int steps) {
 Random rand = new Random();
 int x = 0;
 int r = rand.nextInt(2);

 // Point A

 while (steps > 0 || x == 0) {

 // Point B

 if (r == 0) {
 x++;

 // Point C

 } else {
 x = 0;

 // Point D

 }

 steps--;
 r = rand.nextInt(2);
 }

 // Point E

 return x;
}

Fill in each box below with one of ALWAYS, NEVER or SOMETIMES. (You may abbreviate them as A, N, or S.)

 steps > 0 x > 0 r > 0

Point A

Point B

Point C

Point D

Point E

6 of 8

6. Programming
Write a static method hopscotch that shows a sequence of numbers similar to the appearance of a hopscotch board.
(Hopscotch is a "hopping" game played by children.) For this problem, a hopscotch board is an increasing sequence
of numbers in lines in an alternating pattern. Odd lines contain a single number indented by 3 spaces. Even lines
contain a pair of numbers with the first number not indented, followed by 5 spaces, followed by the second number.

 Your method should accept a parameter representing the number of "hops" worth of numbers to display. A board of 0
"hops" shows only the number 1, indented by 3 spaces. A "hop" is defined as a trio of additional numbers spread
across 2 additional lines, following the pattern described previously. So for example, 1 hop means to show the
numbers 2-3-4 to the board in the pattern shown below. 2 hops means to show the numbers 2-3-4, 5-6-7 on the board.
3 hops means to show 2-3-4, 5-6-7, 8-9-10, and so on. Assume that the number of hops passed will be at least 0.

 Here are some example calls to the method and their resulting console output:

Call hopscotch(0); hopscotch(1); hopscotch(2); hopscotch(3); hopscotch(5);

Output 1 1
2 3
 4

 1
2 3
 4
5 6
 7

 1
2 3
 4
5 6
 7
8 9
 10

 1
2 3
 4
5 6
 7
8 9
 10
11 12
 13
14 15
 16

7 of 8

7. Programming
Write a static method named containsBothDigits that accepts three integer parameters a, b, and c. Assume that a
is a positive integer (greater than 0) and that b and c are single-digit numbers from 0-9 inclusive. Your method should
return true if a contains both b and c at among its digits, and false otherwise.

 For example, the number 433407 contains 4, 3, 0, and 7 as its unique digit values, so a call to your method of
containsBothDigits(433407, 7, 3) should return true. If b and c are the same number, your method should
return true if that digit appears at least once among the digits; in other words, the same digit from a could match
both b and c. So for example, a call of containsBothDigits(433407, 7, 7) should return true. Note that the
digit b or c might appear more than once in a, as with 433407 containing two 3s.

 The following table lists some additional calls to your method and their expected return values:

Call Value Returned Reason
containsBothDigits(12345, 2, 5) true 12345 contains the digits 2 and 5
containsBothDigits(3004955, 3, 0) true 3004955 contains the digits 3 and 0
containsBothDigits(1650, 6, 6) true 1650 contains the digit 6
containsBothDigits(12198, 1, 7) false 12198 does not contain the digit 7
containsBothDigits(42, 9, 2) false 42 does not contain the digit 9
containsBothDigits(904487, 2, 6) false 904487 does not contain the digit 2 or 6
containsBothDigits(8, 2, 3) false 8 does not contain the digit 2 or 3

 Note: You may not use a String to solve this problem.

8 of 8

X. Extra Credit (+1 point)

Describe CSE 142 in two words or less.

 (Any word you write will get the +1 extra point.)

