
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 7

Lecture 7-3: Arrays as Parameters; File Output

reading: 7.1, 4.3, 3.3

self-checks: Ch. 7 #19-23

exercises: Ch. 7 #5

Copyright 2008 by Pearson Education
2

Section attendance question

� Write a program that reads a data file of section

attendance and produces the following output:

Sections attended: [9, 6, 7, 4, 3]
Student scores: [20, 18, 20, 12, 9]
Student grades: [100.0, 90.0, 100.0, 60.0, 45.0]

Sections attended: [6, 7, 5, 6, 4]
Student scores: [18, 20, 15, 18, 12]
Student grades: [90.0, 100.0, 75.0, 90.0, 60.0]

Sections attended: [5, 6, 5, 7, 6]
Student scores: [15, 18, 15, 20, 18]
Student grades: [75.0, 90.0, 75.0, 100.0, 90.0]

• Students earn 3 points for each section attended up to 20.

Copyright 2008 by Pearson Education
3

Section input file
� The input file contains section attendance data:

111111101011111101001110110110110001110010100

111011111010100110101110101010101110101101010

110101011011011011110110101011010111011010101

� Each line represents a section (5 students, 9 weeks).

� 1 means the student attended; 0 not.

week1 week2 week3 week4 week5 week6 week7 week8 wee k9
11111 11010 11111 10100 11101 10110 11000 11100 101 00

week2
student1 student2 student3 student4 student5
1 1 0 1 0

Copyright 2008 by Pearson Education
4

Data transformations
� In this problem we go from 0s and 1s to student grades

� This is called transforming the data.

� Often each transformation is stored in its own array.

� We must map between the data and array indexes.

Examples:

� by position (store the i th value we read at index i)

� tally (if input value is i, store it at array index i)

� explicit mapping (count 'M' at index 0, count 'O' at index 1)

Copyright 2008 by Pearson Education
5

Section attendance answer
// This program reads a file representing which stu dents attended which
// discussion sections and produces output of their attendance and scores.

import java.io.*;
import java.util.*;

public class Sections {
public static void main(String[] args) throws FileN otFoundException {

Scanner input = new Scanner(new File("sections.txt"));
while (input.hasNextLine()) {

String line = input.nextLine(); // process one section
int[] attended = new int[5];
for (int i = 0; i < line.length(); i++) {

if (line.charAt(i) == '1') { // c == '1' or c == '0'
attended[i % 5]++; // student attended section

}
}
int[] points = new int[5];
for (int i = 0; i < attended.length; i++) {

points[i] = Math.min(20, 3 * attended[i]);
}
double[] grades = new double[5];
for (int i = 0; i < points.length; i++) {

grades[i] = 100.0 * points[i] / 20.0;
}
System.out.println("Sections attended: " + Arrays.to String(attended));
System.out.println("Sections scores: " + Arrays.toSt ring(points));
System.out.println("Sections grades: " + Arrays.toSt ring(grades));
System.out.println();

}
}

}

Copyright 2008 by Pearson Education
6

Arrays as parameters
and returns;

values vs. references

reading: 7.1, 3.3, 4.3

self-checks: Ch. 7 #5, 8, 9

exercises: Ch. 7 #1-10

6

Copyright 2008 by Pearson Education
7

Swapping values
public static void main(String[] args) {

int a = 7;
int b = 35;

// swap a with b (incorrectly)
a = b;
b = a;

System.out.println(a + " " + b);
}

� What is wrong with this code? What is its output?

� The red code should be replaced with:

int temp = a;
a = b;
b = temp;

Copyright 2008 by Pearson Education
8

A swap method?

� Does the following swap method work? Why or why not?

public static void main(String[] args) {
int a = 7;
int b = 35;

// swap a with b
swap(a, b);

System.out.println(a + " " + b);
}

public static void swap(int a, int b) {
int temp = a;
a = b;
b = temp;

}

Copyright 2008 by Pearson Education
9

Value semantics (primitives)

� value semantics: Behavior where values are copied when

assigned to each other or passed as parameters.

� When one primitive variable is assigned to another,
its value is copied.

� Modifying the value of one variable does not affect others.

int x = 5;
int y = x ; // x = 5, y = 5
y = 17; // x = 5, y = 17
x = 8; // x = 8, y = 17

x

y

Copyright 2008 by Pearson Education
10

Reference semantics (objects)

� reference semantics: Behavior where variables actually
store the address of an object in memory.

� When one reference variable is assigned to another, the object
is not copied; both variables refer to the same object.

� Modifying the value of one variable will affect others.

int[] a1 = {4, 5, 2, 12, 14, 14, 9};
int[] a2 = a1 ; // refer to same array as a1
a2[0] = 7;
System.out.println(a1[0]); // 7

9141412254value

6543210index

9141412257value

6543210indexa1

a2

Copyright 2008 by Pearson Education
11

References and objects
� Arrays and objects use reference semantics. Why?

� efficiency. Copying large objects slows down a program.

� sharing. It's useful to share an object's data among methods.

DrawingPanel panel1 = new DrawingPanel(80, 50);

DrawingPanel panel2 = panel1; // same window

panel2.setBackground(Color.CYAN);

panel1

panel2

Copyright 2008 by Pearson Education
12

Objects as parameters
� When an object is passed as a parameter, the object is not
copied. The parameter refers to the same object.

� If the parameter is modified, it will affect the original object.

public static void main(String[] args) {
DrawingPanel window = new DrawingPanel(80, 50);
window.setBackground(Color.YELLOW);
example(window);

}

public static void example(DrawingPanel panel) {
panel.setBackground(Color.CYAN);

}

panel

window

Copyright 2008 by Pearson Education
13

Arrays as parameters
� Declaration:

public static type methodName(type[] name) {

� Example:

public static double average(int[] numbers) {

� Call:
methodName(arrayName);

� Example:

int[] scores = {13, 17, 12, 15, 11};

double avg = average(scores);

Copyright 2008 by Pearson Education
14

Array parameter example
public static void main(String[] args) {

int[] iq = {126, 84, 149, 167, 95};
double avg = average(iq);
System.out.println("Average = " + avg);

}

public static double average(int[] array) {
int sum = 0;
for (int i = 0; i < array.length; i++) {

sum += array[i];
}
return (double) sum / array.length;

}

Output:
Average = 124.2

Copyright 2008 by Pearson Education
15

Arrays passed by reference
� Arrays are objects.

� When passed as parameters, they are passed by reference.

(Changes made in the method are also seen by the caller.)

� Example:
public static void main(String[] args) {

int[] iq = {126, 167, 95};
doubleAll(iq) ;
System.out.println(Arrays.toString(iq));

}

public static void doubleAll(int[] a) {
for (int i = 0; i < a.length; i++) {

a[i] = a[i] * 2;
}

}

� Output:
[252, 334, 190]

index 0 1 2

value 126 167 95

index 0 1 2

value 252 334 190

iq

a

Copyright 2008 by Pearson Education
16

Arrays as return (declaring)

public static type[] methodName(parameters) {

� Example:

public static int[] countDigits(int n) {
int[] counts = new int[10];
while (n > 0) {

int digit = n % 10;
n = n / 10;
counts[digit]++;

}
return counts;

}

Copyright 2008 by Pearson Education
17

Arrays as return (calling)

type[] name = methodName(parameters);

� Example:

public static void main(String[] args) {
int[] tally = countDigits(229231007);
System.out.println(Arrays.toString(tally));

}

Output:

[2, 1, 3, 1, 0, 0, 0, 1, 0, 1]

Copyright 2008 by Pearson Education
18

Array param/return question

� Modify our previous Sections program to use static

methods that use arrays as parameters and returns.

Sections attended: [9, 6, 7, 4, 3]
Student scores: [20, 18, 20, 12, 9]
Student grades: [100.0, 90.0, 100.0, 60.0, 45.0]

Sections attended: [6, 7, 5, 6, 4]
Student scores: [18, 20, 15, 18, 12]
Student grades: [90.0, 100.0, 75.0, 90.0, 60.0]

Sections attended: [5, 6, 5, 7, 6]
Student scores: [15, 18, 15, 20, 18]
Student grades: [75.0, 90.0, 75.0, 100.0, 90.0]

Copyright 2008 by Pearson Education
19

Array param/return answer
// This program reads a file representing which stu dents attended
// which discussion sections and produces output of the students'
// section attendance and scores.

import java.io.*;
import java.util.*;

public class Sections {
public static void main(String[] args) throws FileN otFoundException {

Scanner input = new Scanner(new File("sections.txt"));
while (input.hasNextLine()) {

// process one section
String line = input.nextLine();
int[] attended = countAttended(line);
int[] points = computePoints(attended);
double[] grades = computeGrades(points);
results(attended, points, grades);

}
}

// Produces all output about a particular section.
public static void results(int[] attended, int[] po ints, double[] grades) {

System.out.println("Sections attended: " + Arrays.to String(attended));
System.out.println("Sections scores: " + Arrays.toSt ring(points));
System.out.println("Sections grades: " + Arrays.toSt ring(grades));
System.out.println();

}

...

Copyright 2008 by Pearson Education
20

Array param/return answer
...

// Counts the sections attended by each student for a particular section.
public static int[] countAttended(String line) {

int[] attended = new int[5];
for (int i = 0; i < line.length(); i++) {

char c = line.charAt(i);
// c == '1' or c == '0'
if (c == '1') {

// student attended their section
attended[i % 5]++;

}
}
return attended;

}

// Computes the points earned for each student for a particular section.
public static int[] computePoints(int[] attended) {

int[] points = new int[5];
for (int i = 0; i < attended.length; i++) {

points[i] = Math.min(20, 3 * attended[i]);
}
return points;

}

// Computes the percentage for each student for a p articular section.
public static double[] computeGrades(int[] points) {

double[] grades = new double[5];
for (int i = 0; i < points.length; i++) {

grades[i] = 100.0 * points[i] / 20.0;
}
return grades;

}
}

Copyright 2008 by Pearson Education
21

File output

reading: 6.4 - 6.5

Copyright 2008 by Pearson Education
22

Output to files
� PrintStream : An object in the java.io package that lets

you print output to a destination such as a file.

� Any methods you have used on System.out

(such as print , println) will work on a PrintStream .

� Syntax:

PrintStream name = new PrintStream(new File(" file name"));

Example:
PrintStream output = new PrintStream(new File("out.t xt"));
output.println("Hello, file!");
output.println("This is a second line of output.");

Copyright 2008 by Pearson Education
23

Details about PrintStream

PrintStream name = new PrintStream(new File(" file name"));

� If the given file does not exist, it is created.

� If the given file already exists, it is overwritten.

� The output you print appears in a file, not on the console.

You will have to open the file with an editor to see it.

� Do not open the same file for both reading (Scanner) and
writing (PrintStream) at the same time.

� You will overwrite your input file with an empty file (0 bytes).

Copyright 2008 by Pearson Education
24

System.out and PrintStream

� The console output object, System.out , is a PrintStream .

PrintStream out1 = System.out;
PrintStream out2 = new PrintStream(new File("data.tx t"));
out1.println("Hello, console!"); // goes to console
out2.println("Hello, file!"); // goes to file

� A reference to it can be stored in a PrintStream variable.

� Printing to that variable causes console output to appear.

� You can pass System.out as a parameter to a method

expecting a PrintStream .

� Allows methods that can send output to the console or a file.

Copyright 2008 by Pearson Education
25

PrintStream question

� Modify our previous Sections program to use a

PrintStream to output to the file sections_out.txt .

Section #1:
Sections attended: [9, 6, 7, 4, 3]
Student scores: [20, 18, 20, 12, 9]
Student grades: [100.0, 90.0, 100.0, 60.0, 45.0]

Section #2:
Sections attended: [6, 7, 5, 6, 4]
Student scores: [18, 20, 15, 18, 12]
Student grades: [90.0, 100.0, 75.0, 90.0, 60.0]

Section #3:
Sections attended: [5, 6, 5, 7, 6]
Student scores: [15, 18, 15, 20, 18]
Student grades: [75.0, 90.0, 75.0, 100.0, 90.0]

Copyright 2008 by Pearson Education
26

PrintStream answer
// Section attendance program
// This version uses a PrintStream for output.

import java.io.*;
import java.util.*;

public class Sections {
public static void main(String[] args) throws FileN otFoundException {

Scanner input = new Scanner(new File("sections.txt"));
PrintStream out = new PrintStream(new File("sections _out.txt"));
while (input.hasNextLine()) { // process one section

String line = input.nextLine();
int[] attended = countAttended(line);
int[] points = computePoints(attended);
double[] grades = computeGrades(points);
results(attended, points, grades , out);

}
}

// Produces all output about a particular section.
public static void results(int[] attended, int[] po ints,

double[] grades , PrintStream out) {
out.println ("Sections attended: " + Arrays.toString(attended));
out.println ("Sections scores: " + Arrays.toString(points));
out.println ("Sections grades: " + Arrays.toString(grades));
out.println ();

}
...

Copyright 2008 by Pearson Education
27

Prompting for a file name
� We can ask the user to tell us the file to read.

� The file name might have spaces; use nextLine() , not next()

// prompt for input file name
Scanner console = new Scanner(System.in);
System.out.print("Type a file name to use: ");
String filename = console.nextLine();
Scanner input = new Scanner(new File(filename));

� What if the user types a file name that does not exist?

Copyright 2008 by Pearson Education
28

Fixing file-not-found issues
� File objects have an exists method we can use:

Scanner console = new Scanner(System.in);
System.out.print("Type a file name to use: ");
String filename = console.nextLine();
File file = new File(filename);

if (!file.exists()) {
// try a second time
System.out.print("Try again: ");
String filename = console.nextLine();
file = new File(filename);

}
Scanner input = new Scanner(file); // open the file

Output:

Type a file name to use: hourz.text
Try again: hours.txt

