
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 8

Lecture 8-2: Object Methods and Constructors

reading: 8.2 - 8.4

self-checks: #1-12

exercises: #1-4, 9, 11, 14, 16



Copyright 2008 by Pearson Education
2

Recall: Bomb problem
� Given a file of cities' (x, y) coordinates,
which begins with the number of cities:
6
50 20
90 60
10 72
74 98
5 136
150 91

� Write a program to draw the cities on a DrawingPanel, then drop 
a "bomb" that turns all cities red that are within a given radius:

Blast site x/y? 100 100
Blast radius? 75



3
Copyright 2008 by Pearson Education

Object behavior: 
Methods

reading: 8.3

self-check: #7-9

exercises: #1-4



Copyright 2008 by Pearson Education
4

Client code redundancy
� Our client program wants to draw Point objects:

// draw each city
g.fillOval(cities[i].x, cities[i].y, 3, 3);
g.drawString("(" + cities[i].x + ", " + cities[i].y + ")",

cities[i].x, cities[i].y);

� To draw them in other places, the code must be repeated.

� We can remove this redundancy using a method.



Copyright 2008 by Pearson Education
5

Eliminating redundancy, v1
� We can eliminate the redundancy with a static method:

// Draws the given point on the DrawingPanel.
public static void draw(Point p, Graphics g) {

g.fillOval(p.x, p.y, 3, 3);
g.drawString("(" + p.x + ", " + p.y + ")", p.x, p.y);

}

� main would call the method as follows:

// draw each city
draw(cities[i], g);



Copyright 2008 by Pearson Education
6

Problems with static solution

� We are missing a major benefit of objects: code reuse.

� Every program that draws Points would need a draw method.

� The syntax doesn't match how we're used to using objects.

draw(cities[i], g);    // static (bad)

� The point of classes is to combine state and behavior.

� The draw behavior is closely related to a Point's data.

� The method belongs inside each Point object.

cities[i].draw(g);     // inside object (better)



Copyright 2008 by Pearson Education
7

Instance methods
� instance method: One that exists inside each object of a 
class and defines behavior of that object.

public type name(parameters) {

statements;

}

� same syntax as static methods, but without static keyword

Example:

public void shout() {
System.out.println("HELLO THERE!");

}



Copyright 2008 by Pearson Education
8

Instance method example
public class Point {

int x;
int y;

// Draws this Point object with the given pen.
public void draw(Graphics g) {

...
}

}

� The draw method no longer has a Point p parameter.  

� How will the method know which point to draw?

� How will the method access that point's x/y data?



Copyright 2008 by Pearson Education
9

� Each Point object has its own copy of the draw method, which 

operates on that object's state:

Point p1 = new Point();
p1.x = 7;
p1.y = 2;

Point p2 = new Point();
p2.x = 4;
p2.y = 3;

p1.draw(g);
p2.draw(g);

public void draw(Graphics g) {
// this code can see p1's x and y

}

Point objects w/ method

2y7x

3y4x

public void draw(Graphics g) {
// this code can see p2's x and y

}

p2

p1



Copyright 2008 by Pearson Education
10

The implicit parameter

� implicit parameter:

The object on which an instance method is called.

� During the call p1.draw(g);

the object referred to by p1 is the implicit parameter.

� During the call p2.draw(g);

the object referred to by p2 is the implicit parameter.

� The instance method can refer to that object's fields.

� We say that it executes in the context of a particular object.

� draw can refer to the x and y of the object it was called on.



Copyright 2008 by Pearson Education
11

Point class, version 2
public class Point {

int x;
int y;

// Changes the location of this Point object.
public void draw(Graphics g) {

g.fillOval(x, y, 3, 3);
g.drawString("(" + x + ", " + y + ")", x, y);

}
}

� Now each Point object contains a method named draw that 

draws that point at its current x/y position.



Copyright 2008 by Pearson Education
12

Kinds of methods
� Instance methods take advantage of an object's state.

� Some methods allow clients to access/modify its state.

� accessor: A method that lets clients examine object state.

� Example: A distanceFromOrigin method that tells how far a 
Point is away from (0, 0).

� Accessors often have a non-void return type.

� mutator: A method that modifies an object's state.

� Example: A translate method that shifts the position of a 
Point by a given amount.



Copyright 2008 by Pearson Education
13

Mutator method questions
� Write a method setLocation that changes a Point's 
location to the (x, y) values passed.

� You may want to refactor the Point class to use this method.

� Write a method translate that changes a Point's location 
by a given dx, dy amount.

� Modify the client code to use these methods as appropriate.



Copyright 2008 by Pearson Education
14

Mutator method answers
public void setLocation(int newX, int newY) {

x = newX;
y = newY;

}

public void translate(int dx, int dy) {
x += dx;
y += dy;

}

// alternative solution
public void translate(int dx, int dy) {

setLocation(x + dx, y + dy);
}



Copyright 2008 by Pearson Education
15

Accessor method questions
� Write a method distance that computes the distance 
between a Point and another Point parameter.

Use the formula:

� Write a method distanceFromOrigin that returns the 
distance between a Point and the origin, (0, 0).

� Modify the client code to use these methods.

( ) ( )2
12

2
12 yyxx −+−



Copyright 2008 by Pearson Education
16

Accessor method answers
public double distance(Point other) {

int dx = x - other.x;
int dy = y - other.y;
return Math.sqrt(dx * dx + dy * dy);

}

public double distanceFromOrigin() {
return Math.sqrt(x * x + y * y);

}

// alternative solution
public double distanceFromOrigin() {

return distance(new Point());
}



17
Copyright 2008 by Pearson Education

Object initialization: 
constructors

reading: 8.4

self-check: #10-12

exercises: #9, 11, 14, 16



Copyright 2008 by Pearson Education
18

Initializing objects
� Currently it takes 3 lines to create a Point and initialize it:

Point p = new Point();
p.x = 3;
p.y = 8;                     // tedious

� We'd rather pass the fields' initial values as parameters:

Point p = new Point(3, 8 );   // better!

� We are able to this with most types of objects in Java.



Copyright 2008 by Pearson Education
19

Constructors

� constructor: Initializes the state of new objects.

public type(parameters) {
statements;

}

� runs when the client uses the new keyword

� does not specify a return type;

it implicitly returns the new object being created

� If a class has no constructor, Java gives it a default 

constructor with no parameters that sets all fields to 0.



Copyright 2008 by Pearson Education
20

Constructor example

public class Point {
int x;
int y;

// Constructs a Point at the given x/y location.
public Point(int initialX, int initialY) {

x = initialX;
y = initialY;

}

public void translate(int dx, int dy) {
x += dx;
y += dy;

}
}



Copyright 2008 by Pearson Education
21

Tracing a constructor call
� What happens when the following call is made?

Point p1 = new Point(7, 2);

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

public void translate(int dx, int dy) {
x += dx;
y += dy;

}

yxp1



Copyright 2008 by Pearson Education
22

Client code, version 3
public class PointMain3 {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point(5, 2);
Point p2 = new Point(4, 3);

// print each point
System.out.println("p1: (" + p1.x + ", " + p1.y + ")");
System.out.println("p2: (" + p2.x + ", " + p2.y + ")"); 

// move p2 and then print it again
p2.translate(2, 4);
System.out.println("p2: (" + p2.x + ", " + p2.y + ")"); 

}
}

OUTPUT:
p1: (5, 2)
p2: (4, 3)
p2: (6, 7)



Copyright 2008 by Pearson Education
23

Common constructor bugs
� Accidentally writing a return type such as void:

public void Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

� This is not a constructor at all, but a method!

� Storing into local variables instead of fields ("shadowing"):

public Point(int initialX, int initialY) {
int x = initialX;
int y = initialY;

}

� This declares local variables with the same name as the fields, 
rather than storing values into the fields.  The fields remain 0.



Copyright 2008 by Pearson Education
24

Multiple constructors
� A class can have multiple constructors.

� Each one must accept a unique set of parameters.

� Write a constructor for Point objects that accepts no 
parameters and initializes the point to the origin, (0, 0).

// Constructs a new point at (0, 0).
public Point() {

x = 0;
y = 0;

}


