
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 8

Lecture 8-3: Encapsulation, toString

reading: 8.5 - 8.6

self-checks: #13-18, 20-21

exercises: #5, 9, 14

2
Copyright 2008 by Pearson Education

The toString method

reading: 8.6

self-check: #18, 20-21

exercises: #9, 14

Copyright 2008 by Pearson Education
3

Printing objects
� By default, Java doesn't know how to print objects:

Point p = new Point(10, 7);
System.out.println("p: " + p); // p is Point@9e8c34

� We can print a better string (but this is cumbersome):

System.out.println("p: (" + p.x + ", " + p.y + ")") ;

� We'd like to be able to print the object itself:

// desired behavior
System.out.println("p: " + p); // p is (10, 7)

Copyright 2008 by Pearson Education
4

The toString method

� tells Java how to convert an object into a String

� called when an object is printed/concatenated to a String :

Point p1 = new Point(7, 2);

System.out.println("p1 is " + p1);

� If you prefer, you can write .toString() explicitly.

System.out.println("p1 is " + p1.toString());

� Every class has a toString , even if it isn't in your code.

� The default is the class's name and a hex (base-16) number:

Point@9e8c34

Copyright 2008 by Pearson Education
5

toString syntax
public String toString() {

code that returns a suitable String;
}

� The method name, return, parameters must match exactly.

� Example:

// Returns a String representing this Point.
public String toString() {

return "(" + x + ", " + y + ")";
}

Copyright 2008 by Pearson Education
6

Client code
// This client program uses the Point class.
public class PointMain {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point(7, 2);
Point p2 = new Point(4, 3);

// print each point
System.out.println("p1: " + p1);
System.out.println("p2: " + p2);

// compute/print each point's distance from the ori gin
System.out.println("p1's distance from origin: " + p1.distanceFromOrigin());
System.out.println("p2's distance from origin: " + p1.distanceFromOrigin());

// move p1 and p2 and print them again
p1.translate(11, 6);
p2.translate(1, 7);
System.out.println("p1: " + p1);
System.out.println("p2: " + p2);

// compute/print distance from p1 to p2
System.out.println("distance from p1 to p2: " + p1.d istance(p2));

}
}

7
Copyright 2008 by Pearson Education

Encapsulation

reading: 8.5 - 8.6

self-check: #13-17

exercises: #5

Copyright 2008 by Pearson Education
8

Encapsulation

� encapsulation: Hiding implementation details of an

object from its clients.

� Encapsulation provides abstraction.

� separates external view (behavior) from internal view (state)

� Encapsulation protects the integrity of an object's data.

Copyright 2008 by Pearson Education
9

Private fields
� A field can be declared private.

� No code outside the class can access or change it.

private type name;

� Examples:

private int id;

private String name;

� Client code sees an error when accessing private fields:

PointMain.java:11: x has private access in Point

System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");

^

Copyright 2008 by Pearson Education
10

Accessing private state
� We can provide methods to get and/or set a field's value:

// A "read-only" access to the x field ("accessor")
public int getX() {

return x;
}

// Allows clients to change the x field ("mutator")
public void setX(int newX) {

x = newX;
}

� Client code will look more like this:

System.out.println("p1: (" + p1.getX() + ", " + p1.getY() + ")");

p1.setX(14);

Copyright 2008 by Pearson Education
11

Point class, version 4
// A Point object represents an (x, y) location.
public class Point {

private int x;
private int y;

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

public double distanceFromOrigin() {
return Math.sqrt(x * x + y * y);

}

public int getX() {
return x;

}

public int getY() {
return y;

}

public void setLocation(int newX, int newY) {
x = newX;
y = newY;

}

public void translate(int dx, int dy) {
x = x + dx;
y = y + dy;

}
}

Copyright 2008 by Pearson Education
12

Client code, version 4
public class PointMain4 {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point(5, 2);
Point p2 = new Point(4, 3);

// print each point
System.out.println("p1: (" + p1.getX() + ", " + p1.getY() + ")");
System.out.println("p2: (" + p2.getX() + ", " + p2.getY() + ")");

// move p2 and then print it again
p2.translate(2, 4);
System.out.println("p2: (" + p2.getX() + ", " + p2.getY() + ")");

}
}

OUTPUT:
p1 is (5, 2)
p2 is (4, 3)
p2 is (6, 7)

Copyright 2008 by Pearson Education
13

Benefits of encapsulation

� Provides abstraction between an object and its clients.

� Protects an object from unwanted access by clients.

� A bank app forbids a client to change an Account 's balance.

� Allows you to change the class implementation.

� Point could be rewritten to use polar coordinates

(radius r, angle θ), but with the same methods.

� Allows you to constrain objects' state (invariants).

� Example: Only allow Point s with non-negative coordinates.

14
Copyright 2008 by Pearson Education

The keyword this

reading: 8.7

Copyright 2008 by Pearson Education
15

this
� this : A reference to the implicit parameter.

� implicit parameter: object on which a method is called

� Syntax for using this :

� To refer to a field:

this. field

� To call a method:

this. method(parameters);

� To call a constructor from another constructor:

this(parameters);

Copyright 2008 by Pearson Education
16

Variable names and scope
� Usually it is illegal to have two variables in the same scope

with the same name.

public class Point {

int x;

int y;

...

public void setLocation(int newX, int newY) {

x = newX;

y = newY;

}

}

� The parameters to setLocation are named newX and newY to
be distinct from the object's fields x and y.

Copyright 2008 by Pearson Education
17

Variable shadowing
� An instance method parameter can have the same name as

one of the object's fields:

// this is legal
public void setLocation(int x , int y) {

...
}

� Fields x and y are shadowed by parameters with same names.

� Any setLocation code that refers to x or y will use the

parameter, not the field.

Copyright 2008 by Pearson Education
18

Avoiding shadowing w/ this
public class Point {

private int x ;
private int y ;

...

public void setLocation(int x , int y) {
this.x = x;
this.y = y;

}
}

� Inside the setLocation method,

� When this.x is seen, the field x is used.

� When x is seen, the parameter x is used.

Copyright 2008 by Pearson Education
19

Multiple constructors
� It is legal to have more than one constructor in a class.

� The constructors must accept different parameters.

public class Point {
private int x;
private int y;

public Point() {
x = 0;
y = 0;

}

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

...
}

Copyright 2008 by Pearson Education
20

Constructors and this
� One constructor can call another using this :

public class Point {
private int x;
private int y;

public Point() {
this(0, 0); // calls the (x, y) constructor

}

public Point(int x , int y) {
this.x = x;
this.y = y;

}

...
}

