
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 9

Lecture 9-1: Inheritance

reading: 9.1 - 9.2

Copyright 2008 by Pearson Education
2

The software crisis
� software engineering: The practice of developing,
designing, documenting, testing large computer programs.

� Large-scale projects face many issues:

� getting many programmers to work together

� getting code finished on time

� avoiding redundant code

� finding and fixing bugs

� maintaining, improving, and reusing existing code

� code reuse: The practice of writing program code once
and using it in many contexts.

Copyright 2008 by Pearson Education
3

Law firm employee analogy
� common rules: hours, vacation, benefits, regulations ...

� all employees attend a common orientation to learn general
company rules

� each employee receives a 20-page manual of common rules

� each subdivision also has specific rules:

� employee receives a smaller (1-3 page) manual of these rules

� smaller manual adds some new rules and also changes some
rules from the large manual

Copyright 2008 by Pearson Education
4

Separating behavior
� Why not just have a 22 page Lawyer manual, a 21-page
Secretary manual, a 23-page Marketer manual, etc.?

� Some advantages of the separate manuals:

� maintenance: Only one update if a common rule changes.

� locality: Quick discovery of all rules specific to lawyers.

� Some key ideas from this example:

� General rules are useful (the 20-page manual).

� Specific rules that may override general ones are also useful.

Copyright 2008 by Pearson Education
5

Is-a relationships, hierarchies

� is-a relationship: A hierarchical connection where one
category can be treated as a specialized version of another.

� every marketer is an employee

� every legal secretary is a secretary

� inheritance hierarchy: A set of classes connected by is-a
relationships that can share common code.

Copyright 2008 by Pearson Education
6

Employee regulations
� Consider the following employee regulations:

� Employees work 40 hours / week.

� Employees make $40,000 per year, except legal secretaries who

make $5,000 extra per year ($45,000 total), and marketers who

make $10,000 extra per year ($50,000 total).

� Employees have 2 weeks of paid vacation leave per year, except

lawyers who get an extra week (a total of 3).

� Employees should use a yellow form to apply for leave, except for

lawyers who use a pink form.

� Each type of employee has some unique behavior:

� Lawyers know how to sue.

� Marketers know how to advertise.

� Secretaries know how to take dictation.

� Legal secretaries know how to prepare legal documents.

Copyright 2008 by Pearson Education
7

An Employee class
// A class to represent employees in general (20-pa ge manual).
public class Employee {

public int getHours() {
return 40; // works 40 hours / week

}

public double getSalary() {
return 40000.0; // $40,000.00 / year

}

public int getVacationDays() {
return 10; // 2 weeks' paid vacation

}

public String getVacationForm() {
return "yellow"; // use the yellow form

}
}

� Exercise: Implement class Secretary , based on the previous
employee regulations. (Secretaries can take dictation.)

Copyright 2008 by Pearson Education
8

Redundant Secretary class
// A redundant class to represent secretaries.
public class Secretary {

public int getHours() {
return 40; // works 40 hours / week

}

public double getSalary() {
return 40000.0; // $40,000.00 / year

}

public int getVacationDays() {
return 10; // 2 weeks' paid vacation

}

public String getVacationForm() {
return "yellow"; // use the yellow form

}

public void takeDictation(String text) {
System.out.println("Taking dictation of text: " + te xt);

}
}

Copyright 2008 by Pearson Education
9

Desire for code-sharing
� takeDictation is the only unique behavior in Secretary .

� We'd like to be able to say:

// A class to represent secretaries.

public class Secretary {

copy all the contents from the Employee class;

public void takeDictation(String text) {

System.out.println("Taking dictation of text: " + te xt);

}

}

Copyright 2008 by Pearson Education
10

Inheritance
� inheritance: A way to form new classes based on existing
classes, taking on their attributes/behavior.

� a way to group related classes

� a way to share code between two or more classes

� One class can extend another, absorbing its data/behavior.

� superclass: The parent class that is being extended.

� subclass: The child class that extends the superclass and
inherits its behavior.

� Subclass gets a copy of every field and method from superclass

Copyright 2008 by Pearson Education
11

Inheritance syntax
public class name extends superclass {

� Example:

public class Secretary extends Employee {

...

}

� By extending Employee , each Secretary object now:

� receives a getHours , getSalary , getVacationDays , and
getVacationForm method automatically

� can be treated as an Employee by client code (seen later)

Copyright 2008 by Pearson Education
12

Improved Secretary code
// A class to represent secretaries.
public class Secretary extends Employee {

public void takeDictation(String text) {
System.out.println("Taking dictation of text: " + te xt);

}
}

� Now we only write the parts unique to each type.

� Secretary inherits getHours , getSalary , getVacationDays ,
and getVacationForm methods from Employee .

� Secretary adds the takeDictation method.

Copyright 2008 by Pearson Education
13

Implementing Lawyer
� Consider the following lawyer regulations:

� Lawyers who get an extra week of paid vacation (a total of 3).

� Lawyers use a pink form when applying for vacation leave.

� Lawyers have some unique behavior: they know how to sue.

� Problem: We want lawyers to inherit most behavior from
employee, but we want to replace parts with new behavior.

Copyright 2008 by Pearson Education
14

Overriding methods
� override: To write a new version of a method in a subclass
that replaces the superclass's version.

� No special syntax required to override a superclass method.
Just write a new version of it in the subclass.

public class Lawyer extends Employee {
// overrides getVacationForm method in Employee clas s
public String getVacationForm() {

return "pink";
}
...

}

� Exercise: Complete the Lawyer class.

� (3 weeks vacation, pink vacation form, can sue)

Copyright 2008 by Pearson Education
15

Lawyer class
// A class to represent lawyers.
public class Lawyer extends Employee {

// overrides getVacationForm from Employee class
public String getVacationForm() {

return "pink";
}

// overrides getVacationDays from Employee class
public int getVacationDays() {

return 15; // 3 weeks vacation
}

public void sue() {
System.out.println("I'll see you in court!");

}
}

� Exercise: Complete the Marketer class. Marketers make
$10,000 extra ($50,000 total) and know how to advertise.

Copyright 2008 by Pearson Education
16

Marketer class
// A class to represent marketers.
public class Marketer extends Employee {

public void advertise() {
System.out.println("Act now while supplies last!");

}

public double getSalary() {
return 50000.0; // $50,000.00 / year

}
}

Copyright 2008 by Pearson Education
17

Levels of inheritance
� Multiple levels of inheritance in a hierarchy are allowed.

� Example: A legal secretary is the same as a regular secretary
but makes more money ($45,000) and can file legal briefs.

public class LegalSecretary extends Secretary {

...

}

� Exercise: Complete the LegalSecretary class.

Copyright 2008 by Pearson Education
18

LegalSecretary class
// A class to represent legal secretaries.
public class LegalSecretary extends Secretary {

public void fileLegalBriefs() {
System.out.println("I could file all day!");

}

public double getSalary() {
return 45000.0; // $45,000.00 / year

}
}

Copyright 2008 by Pearson Education
19

Interacting with the
superclass (super)

reading: 9.3

19

Copyright 2008 by Pearson Education
20

Changes to common behavior

� Imagine a company-wide change affecting all employees.

Example: Everyone is given a $10,000 raise due to inflation.

� The base employee salary is now $50,000.

� Legal secretaries now make $55,000.

� Marketers now make $60,000.

� We must modify our code to reflect this policy change.

Copyright 2008 by Pearson Education
21

Modifying the superclass
// A class to represent employees in general (20-pa ge manual).
public class Employee {

public int getHours() {
return 40; // works 40 hours / week

}

public double getSalary() {
return 50000.0; // $50,000.00 / year

}

...
}

� Are we finished?

� The Employee subclasses are still incorrect.

� They have overridden getSalary to return other values.

Copyright 2008 by Pearson Education
22

An unsatisfactory solution
public class LegalSecretary extends Secretary {

public double getSalary() {

return 55000.0;

}

...

}

public class Marketer extends Employee {

public double getSalary() {

return 60000.0;

}

...

}

� Problem: The subclasses' salaries are based on the Employee
salary, but the getSalary code does not reflect this.

Copyright 2008 by Pearson Education
23

Calling overridden methods
� Subclasses can call overridden methods with super

super. method(parameters)

� Example:

public class LegalSecretary extends Secretary {
public double getSalary() {

double baseSalary = super.getSalary() ;
return baseSalary + 5000.0;

}
...

}

� Exercise: Modify Lawyer and Marketer to use super .

Copyright 2008 by Pearson Education
24

Improved subclasses
public class Lawyer extends Employee {

public String getVacationForm() {
return "pink";

}

public int getVacationDays() {
return super.getVacationDays() + 5;

}

public void sue() {
System.out.println("I'll see you in court!");

}
}

public class Marketer extends Employee {
public void advertise() {

System.out.println("Act now while supplies last!");
}

public double getSalary() {
return super.getSalary() + 10000.0;

}
}

