
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 9

Lecture 9-x: Critters

reading: HW9 Spec

Copyright 2008 by Pearson Education
2

Critters
� A simulation world with animal objects with behavior:

� getMove movement

� eat eating food

� fight animal fighting

� toString letter to display

� getColor color to display

� You must implement:

� Bear

� Lion

� Tiger

� Husky (creative)

Copyright 2008 by Pearson Education
3

A Critter subclass

public class name extends Critter {

...

}

� extends Critter tells the simulator your class is a critter

� an example of inheritance

� Write some/all 5 methods to give your animals behavior.

Copyright 2008 by Pearson Education
4

How the simulator works
� When you press "Go", the simulator enters a loop:

� move each animal once (getMove), in random order

� if the animal has moved onto an occupied square, fight!

� if the animal has moved onto food, ask it if it wants to eat

� Key concept: The simulator is in control, NOT your animal.

� Example: getMove can return only one move at a time.
getMove can't use loops to return a sequence of moves.

� Your animal must keep state (as fields) so that it can make a
single move, and know what moves to make later.

Copyright 2008 by Pearson Education
5

Critter exercise

� Write a critter class Cougar (the dumbest of all animals):

Always returns "C"toString

The drunk Cougar staggers left 2, right 2, repeats.getMove

Blue if the Cougar has never fought; red if he has.getColor

Always pounces.fight

Always eats.eat

BehaviorMethod

Copyright 2008 by Pearson Education
6

Ideas for state
� You must not only have the right state, but update that
state properly when relevant actions occur.

� Counting is helpful:

� How many total moves has this animal made?

� How many times has it eaten? Fought?

� Remembering recent actions in fields is helpful:

� Which direction did the animal move last?

� How many times has it moved that way?

� Did the animal eat the last time it was asked?

� How many steps has the animal taken since last eating?

� How many fights has the animal been in since last eating?

Copyright 2008 by Pearson Education
7

Keeping state
� How can a critter move left 2, right 2, and repeat?

public Direction getMove() {
for (int i = 1; i <= 2; i++) {

return Direction.WEST;
}
for (int i = 1; i <= 2; i++) {

return Direction.EAST;
}

}

private int moves; // total moves made by this Critter

public Direction getMove() {
moves++;
if (moves % 4 == 1 || moves % 4 == 2) {

return Direction.WEST;
} else {

return Direction.EAST;
}

}

Copyright 2008 by Pearson Education
8

Cougar solution
public class Cougar extends Critter {

private int moves;
private boolean fought;
public Cougar() {

moves = 0;
fought = false;

}
public boolean eat() {

return true;
}
public Attack fight() {

fought = true;
return Attack.POUNCE;

}
public Color getColor() {

if (fought) {
return Color.RED;

} else {
return Color.BLUE;

}
}
public Direction getMove() {

moves++;
if (moves % 4 == 1 || moves % 4 == 2) {

return Direction.WEST;
} else {

return Direction.EAST;
}

}
public String toString() {

return "C";
}

}

Copyright 2008 by Pearson Education
9

Testing critters
� Focus on one specific Critter of one specific type

� Only spawn 1 of each Critter type

� Make sure your fields update properly

� Use println statements to see field values

� Look at the behavior one step at a time

� Use "Tick" rather than "Go"

Copyright 2008 by Pearson Education
10

A complex Critter: Snake

Always returns "S"toString

1 E, 1 S; 2 W, 1 S; 3 E, 1 S; 4 W, 1 S; 5 E, ...getMove

(red=20, green=50, blue=128)getColor

Randomly choose to roar or pouncefight

Never eatseat

BehaviorMethod

Copyright 2008 by Pearson Education
11

Determining necessary fields
� Information required to decide what move to make?

� Direction to go in

� Length of current cycle

� Number of moves made in current cycle

� Information required to decide how to fight?

� A Random object

Copyright 2008 by Pearson Education
12

Snake solution
import java.awt.*; // for Color
import java.util.*; // for Random

public class Snake extends Critter {
private int length; // # steps in current horizontal cycle
private int step; // # of cycle's steps already taken
private Random rand; // for fighting

public Snake() {
length = 1;
step = 0;
rand = new Random();

}

public Direction getMove() {
step++;
if (step > length) { // cycle was just completed

length++;
step = 0;
return Direction.SOUTH;

} else if (length % 2 == 1) {
return Direction.EAST;

} else {
return Direction.WEST;

}
}
...

Copyright 2008 by Pearson Education
13

Snake solution 2
...

public Attack fight(String opponent) {
int attack = rand.nextInt(2);
if (attack == 0) {

return Attack.POUNCE;
} else {

return Attack.ROAR;
}

}

public String toString() {
return "S";

}

public Color getColor() {
return new Color(20, 50, 128);

}

// We don't need to write an eat method;
// We can just keep the default eat behavior (retur ning false)

}

