CSE 142, Summer 2008
Programming Assignment #5: Guessing Game (20 points)

Part A (single game) due Wednesday, July 30, 2008, 11:00 PM
Part B (complete program) due Friday, August 1, 2008, 11:00 PM

This assignment focuses ahile loops and random numbers. Turn in a file naeessingGame.java

Your program allows the user to play a game in Whie program thinks of a random integer and asogpésses from
the user until the user guesses the number correafter each incorrect guess, you will tell theea whether the correct
answer is higher or lower. Your program must dyaetproduce the format and behavior of the logthis document.

This assignment will be due in two parts: an ihitiarsion A that plays only a single game, and sheond complete
(multi-game) version B a few days later. The alifart A will not be worth as many points as teeasd Part B.

Program Behavior (Part B):

ThIS program IS a guessing game.

I will think of a number between 1 and 100
and you keep guessing until you get it right.
I will'tell you whether the corfect answer’is
higher or lower than each guess.

I'm thinking of a number between 1 and 100...
Your guess? 50

It's lower. -

Your guess? 25

It's higher. -

Your guess? 37

It's higher. -

Your guess? 43

It's higher. -

Your guess? 47

It's lower. -

Your guess? 45

You got it right imr6 guesses!

Do you want to play again? y

I'm thinking of a number between 1 and 100...
Your guess? 20

It's higher. —_

Your guess? 40

It's lower. —

Your guess? 30

It's higher. —_

Your guess? 32

It's lower. —

Your guess? 31
You got it right imr5 guesses!
Do you want to play again? YES

I'm thinking of a number between 1 and 100...
Your guess? 75
It's lower.

Your guess? 25
It's higher. -
Your guess? 50
It's higher. -
Your guess? 60
It's higher. -
Your guess? 70
It's lower. -
Your guess? 65
It's lower. -
Your guess? 62
It's higher. -
Your guess? 63
It's higher. -

Your guess? 64
You got it right im9 guesses!
Do you want to play again? no

Overall results:

total games =3

total guesses = 20

%uesses/game =6.7
est game =5

First, the program prints a header message desgribi
itself. Next, a series of guessing games is played

In each game, the computer chooses a random number
between 1 and 100 inclusive. The game asks the use
for guesses until the correct number is guessefler A
each incorrect guess, the program reports to tee us
whether the correct number is higher or lower. Whe
the game ends, the program reports how many guesses
were needed.

After each game, the program asks the user if be/sh
would like to play again. A new game should befjin
this answer starts with a lower- or upper-caseTat

is, answers such as "y", "Y", "yes", "YES", "Yedg},
"yeehaw" all indicate that the user wants to plggia.

Any other response means that the user does nattavan
play again. For example, responses of "no", "No",
"okay", "0", and "hello" are all assumed to mean no
Assume the user will always give a one-word answer.

Once the user chooses not to play again, the progra
prints overall statistics. The total humber of gam
total guesses made in all games, average number of
guesses per game (as a real number rounded to the
nearest tenth), and best game (fewest guesses) are
displayed. Your statistics should present correct
information for any number of games 1, and any
number of guessesl in each game. You may assume
that no game will require one billion or more guesss

You should not write any special code to handle the
case where the user guesses the correct numbéeon t
first try. Print the same message as usual:

You got it right in 1 guesses!

Your program will have different random numberst bu
your output's structure should match the outputvsho

1of2

Program Behavior (Part A):

I(%éhgnn'gcv%f {5a4%l)1mber between 1 and 100... In Part A, a single guessing game is played. disdwot
Your guess? 50 print a welcome message or prompt to play more game
$§J?3§£‘ss? 25 Notice that in Part A, the program should print the
It's higher. _ game's correct answer firs{The answer is 48)
%g”ﬁigﬁgrss'? 37 at left). This is for your own debugging purposss,
Your guess? 43 that you can test your program logic and make gate
It's higher. — are giving the correct lower/higher hints. Befg@u
Your guess? 47 turn in Part B this correct answer hint messageilsho
%uﬁ'gnggs? 48 be removed, but you may want to leave it in while
You got it right in 6 guesses! you're developing Part B to help you test your code

Implementation Guidelines:

In Part B, you must define@ass constant for the maximum number used in the guessing gafie sample log shows
the user making guesses from 1 to 100, but youldhos able to change just the value of the condamause the
program to play the game with other ranges, suchramge of 1 to 50, a range of 1 to 250, or angeastarting with 1.

Use your constant throughout your code and doefet to the number 100 directly. Test your progtanmchanging the

value of your constant and running the programratimimake sure that everything works right with tiesv value. For

example, run a guessing game for numbers betwaad 5. The web site shows expected output for awse.

Assume valid user input. When prompted for numbibes user will type valid integers in proper rang&Vhen the user
is prompted to play again, the user will type a-amed answer. Read the answer usingSbenner 'snext() method.
To check for a yes/no user response, you may wamdString methods described in Chapters 3-4 of the bookouf
get aninputMismatchException error, it means you are trying to read the wroyetof value from a Scanner. For
example, you are trying to read an integer wheruieg has typed a word.

Produce repetition usinghile or do/while loops. You may also want to review fencepost sofspm Chapter 4 and
sentinel loops from Chapter 5. Chapter 5's castyss a particularly relevant example for thisigissent.

Produce randomness using a sirkg@domobject, as described in Chapter Remember témport java.util.*;

Stylistic Guidelines:
For this assignment you are limited to the langdagtures in Chapters 1-5 shown in lecture or élé&bbok.

Structure your solution using static methods tltaept parameters and return values where appreprior full credit,
you must have at lea8tnon-trivial methods other than main in your program. Two of these must be the follayvi

1. a method to play one game with the user (not maltipmes)
2. amethod taeport the overall statistics to the user (and nothing more)

You may define more methods than this if you fihtelpful, although you will find that the limitath that methods can
return only one value will tend to limit how mucbu/can decompose this problem.

You may define other methods if they are usefulstoucture or to eliminate redundancy. Unlike @stpprograms, it is
okay to have somgrintin statements imain, as long as your program has good structurengaial is still a concise
summary of the program. For example, you can plaedoop that performs multiple games and the jptamplay again
in main. As a reference, our solution has 4 methods dkiz@mmain and occupies between 80-100 lines total.

For this assignment you are limited to the languBsggures in Chapters 1-5 of the textbook. Usetegpace and
indentation properly. Limit lines to 100 charasteiGive meaningful names to methods and variables follow Java's
naming standards. Localize variables wheneverilpessinclude a comment at the beginning of yourgpam with basic
description information and a comment at the stheach method. Since this program has longer adsthhan past
programs, also put brief comments inside the metlexglaining relevant sections of your code.

20f2

