
Copyright 2008 by Pearson Education

Building Java Programs

Graphics

Reading: Supplement 3G

Copyright 2008 by Pearson Education
2

Lecture outline

� drawing 2D graphics

� DrawingPanel and Graphics objects

� drawing and filling shapes

� coordinate system

� colors

� drawing with loops

� drawing with parameterized methods

� advanced topics: custom colors, polygons, animation

Copyright 2008 by Pearson Education
3

Graphical objects

� We will draw graphics using these kinds of objects:

� DrawingPanel: A window on the screen.

� Not part of Java; provided by the authors.

� Graphics: A "pen" to draw shapes/lines on a window.

� Color: Colors in which to draw shapes.

� object: An entity that contains
data and behavior.

� data: Variables inside the object.

� behavior: Methods inside the object.

Copyright 2008 by Pearson Education
4

DrawingPanel

� To create a window:
DrawingPanel <name> = new DrawingPanel(<width>, <height>);

Example:

DrawingPanel panel = new DrawingPanel(300, 200);

� The window has nothing on it.

� We can draw shapes and
lines on it using another object
of type Graphics.

Copyright 2008 by Pearson Education
5

Graphics

� Shapes are drawn using an object of class Graphics.

� You must place an import declaration in your program:
import java.awt.*;

� Access it by calling getGraphics on your DrawingPanel.

Graphics g = panel.getGraphics();

� Draw shapes by calling methods
on the Graphics object.

g.fillRect(10, 30, 60, 35);

g.fillOval(80, 40, 50, 70);

Copyright 2008 by Pearson Education
6

Graphics methods

text with bottom-left at (x, y)g.drawString(text, x, y);

outline largest oval that fits in a box of
size width * height with top-left at (x, y)

g.drawOval(x, y, width, height);

fill largest oval that fits in a box of size
width * height with top-left at (x,y)

g.fillOval(x, y, width, height);

set Graphics to paint any following
shapes in the given color

g.setColor(Color);

fill rectangle of size width * height
with top-left at (x, y)

g.fillRect(x, y, width, height);

outline of rectangle of size width *
height with top-left at (x, y)

g.drawRect(x, y, width, height);

line between points (x1, y1), (x2, y2)g.drawLine(x1, y1, x2, y2);

DescriptionMethod name

Copyright 2008 by Pearson Education
7

Coordinate system

� Each (x, y) position is a pixel ("picture element").

� (0, 0) is at the window's top-left corner.

� x increases rightward and the y increases downward.

� The rectangle from (0, 0) to (200, 100) looks like this:

(0, 0) x+

(200, 100)

y+

Copyright 2008 by Pearson Education
8

Colors

� Colors are specified by Color class constants named:
BLACK, BLUE, CYAN, DARK_GRAY, GRAY, GREEN, LIGHT_GRAY,
MAGENTA, ORANGE, PINK, RED, WHITE, YELLOW

� Pass to Graphics object's setColor method:
g.setColor(Color.BLACK);
g.fillRect(10, 30, 100, 50);
g.setColor(Color.RED);
g.fillOval(60, 40, 40, 70);

� The background color can be set by calling
setBackground on the DrawingPanel:

panel.setBackground(Color.YELLOW);

Copyright 2008 by Pearson Education
9

Outlined shapes

� To draw a shape with a fill and outline, first fill it in the fill
color and then draw the same shape in the outline color.

import java.awt.*; // so I can use Graphics

public class DrawOutline {
public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(150, 70);
Graphics g = panel.getGraphics();

// inner red fill
g.setColor(Color.RED);
g.fillRect(20, 10, 100, 50);

// black outline
g.setColor(Color.BLACK);
g.drawRect(20, 10, 100, 50);

}
}

Copyright 2008 by Pearson Education
10

Superimposing shapes

� When two shapes occupy the same pixels, the last one
drawn is seen.

import java.awt.*;

public class DrawCar {
public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(200, 100);
panel.setBackground(Color.LIGHT_GRAY);
Graphics g = panel.getGraphics();

g.setColor(Color.BLACK);
g.fillRect(10, 30, 100, 50);

g.setColor(Color.RED);
g.fillOval(20, 70, 20, 20);
g.fillOval(80, 70, 20, 20);

g.setColor(Color.CYAN);
g.fillRect(80, 40, 30, 20);

}
}

Copyright 2008 by Pearson Education
11

Drawing with loops

� The x, y, w, h expression can contain the loop counter, i.

DrawingPanel panel = new DrawingPanel(400, 300);
panel.setBackground(Color.YELLOW);
Graphics g = panel.getGraphics();

g.setColor(Color.RED);
for (int i = 1; i <= 10; i++) {

g.fillOval(100 + 20 * i, 5 + 20 * i, 50, 50);
}

DrawingPanel panel = new DrawingPanel(250, 220);
Graphics g = panel.getGraphics();
g.setColor(Color.MAGENTA);
for (int i = 1; i <= 10; i++) {

g.drawOval(30, 5, 20 * i, 20 * i);
}

Copyright 2008 by Pearson Education
12

Loops that begin at 0

� Beginning a loop at 0 and using < can make coordinates
easier to compute.

� Example:

� Draw ten stacked rectangles starting at (20, 20), height 10,
width starting at 100 and decreasing by 10 each time:

DrawingPanel panel = new DrawingPanel(160, 160);
Graphics g = panel.getGraphics();

for (int i = 0; i < 10; i++) {
g.drawRect(20, 20 + 10 * i,

100 - 10 * i, 10);
}

Copyright 2008 by Pearson Education
13

Drawing w/ loops questions

� Code from previous slide:

DrawingPanel panel = new DrawingPanel(160, 160);
Graphics g = panel.getGraphics();

for (int i = 0; i < 10; i++) {
g.drawRect(20, 20 + 10 * i,

100 - 10 * i, 10);
}

� Write variations of the above
program that draw the figures
at right as output.

Copyright 2008 by Pearson Education
14

Drawing w/ loops answers

� Solution #1:
Graphics g = panel.getGraphics();
for (int i = 0; i < 10; i++) {

g.drawRect(20 + 10 * i, 20 + 10 * i,
100 - 10 * i, 10);

}

� Solution #2:
Graphics g = panel.getGraphics();
for (int i = 0; i < 10; i++) {

g.drawRect(110 - 10 * i, 20 + 10 * i,
10 + 10 * i, 10);

}

Copyright 2008 by Pearson Education
15

Drawing with methods

� To draw in multiple methods, you must pass Graphics g.
import java.awt.*;

public class DrawCar1 {
public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(200, 100);
panel.setBackground(Color.LIGHT_GRAY);
Graphics g = panel.getGraphics();
drawCar(g);

}

public static void drawCar(Graphics g) {
g.setColor(Color.BLACK);
g.fillRect(10, 30, 100, 50);

g.setColor(Color.RED);
g.fillOval(20, 70, 20, 20);
g.fillOval(80, 70, 20, 20);

g.setColor(Color.CYAN);
g.fillRect(80, 40, 30, 20);

}
}

Copyright 2008 by Pearson Education
16

Parameterized figures

� Modify the car-drawing method so that it can draw many
cars, such as in the following image.

� Top-left corners: (10, 30), (150, 10)

� Hint: We must modify our drawCar method to accept x/y
coordinates as parameters.

Copyright 2008 by Pearson Education
17

Parameterized answer
import java.awt.*;

public class DrawCar2 {
public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(260, 100);
panel.setBackground(Color.LIGHT_GRAY);
Graphics g = panel.getGraphics();
drawCar(g, 10, 30);
drawCar(g, 150, 10);

}

public static void drawCar(Graphics g, int x, int y) {
g.setColor(Color.BLACK);
g.fillRect(x, y, 100, 50);

g.setColor(Color.RED);
g.fillOval(x + 10, y + 40, 20, 20);
g.fillOval(x + 70, y + 40, 20, 20);

g.setColor(Color.CYAN);
g.fillRect(x + 70, y + 10, 30, 20);

}
}

Copyright 2008 by Pearson Education
18

� Modify drawCar to allow the car to be drawn at any size.
� Existing car: size 100. Second car: (150, 10), size 50.

� Once you have this working, use a for loop with your
method to draw a line of cars, like the picture at right.

� Start at (10, 130), each size 40, separated by 50px.

Drawing parameter question

Copyright 2008 by Pearson Education
19

Drawing parameter answer
import java.awt.*;

public class DrawCar3 {
public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(210, 100);
panel.setBackground(Color.LIGHT_GRAY);

Graphics g = panel.getGraphics();
drawCar(g, 10, 30, 100);
drawCar(g, 150, 10, 50);
for (int i = 0; i < 5; i++) {

drawCar(g, 10 + i * 50, 130, 40);
}

}

public static void drawCar(Graphics g, int x, int y, int size) {
g.setColor(Color.BLACK);
g.fillRect(x, y, size, size / 2);

g.setColor(Color.RED);
g.fillOval(x + size / 10, y + 2 * size / 5,

size / 5, size / 5);
g.fillOval(x + 7 * size / 10, y + 2 * size / 5,

size / 5, size / 5);

g.setColor(Color.CYAN);
g.fillRect(x + 7 * size / 10, y + size / 10,

3 * size / 10, size / 5);
}

}

Copyright 2008 by Pearson Education
20

Custom colors

� You can construct custom Color objects.

� Pass 3 numbers from 0-255 for red, green, and blue.

DrawingPanel panel = new DrawingPanel(80, 50);

Color brown = new Color(192, 128, 64);

panel.setBackground(brown);

� or:

DrawingPanel panel = new DrawingPanel(80, 50);

panel.setBackground(new Color(192, 128, 64));

Copyright 2008 by Pearson Education
21

Drawing polygons

� Polygon objects represent arbitrary shapes.
� Add points to a Polygon using its addPoint(x, y) method.

� Example:
DrawingPanel p = new DrawingPanel(100, 100);
Graphics g = p.getGraphics();
g.setColor(Color.GREEN);
Polygon poly = new Polygon();
poly.addPoint(10, 90);
poly.addPoint(50, 10);
poly.addPoint(90, 90);
g.fillPolygon(poly);

Copyright 2008 by Pearson Education
22

Animation with sleep

� DrawingPanel's sleep method pauses your program for a
given number of milliseconds.

� You can use sleep to create simple animations.
DrawingPanel panel = new DrawingPanel(250, 200);
Graphics g = panel.getGraphics();

g.setColor(Color.BLUE);
for (int i = 1; i <= NUM_CIRCLES; i++) {

g.fillOval(15 * i, 15 * i, 30, 30);
panel.sleep(500);

}

� Try adding sleep commands to loops in past exercises in this
chapter and watch the panel draw itself piece by piece.

