
Building Java Programs

Chapter 4:

Copyright 2008 by Pearson Education

Chapter 4:
Conditional Execution

Lecture 4-2: Objects, String Objects



Objects

reading: 3.3

Copyright 2008 by Pearson Education

reading: 3.3



Objects and classes

� object: An entity that contains:

� data (variables),

� behavior (methods).

� class: A program, or a template for a type of objects.

Copyright 2008 by Pearson Education
3

� class: A program, or a template for a type of objects.

� Examples:

� The class String represents objects that store text.

� The class DrawingPanel represents objects that can display 

drawings.

� The class Scanner represents objects that read information 

from the keyboard, files, and other sources.



Constructing objects

� Constructing (creating) objects, general syntax:

<type> <name> = new <type> ( <parameters> );

DrawingPanel p = new DrawingPanel(300, 200);
Color orange = new Color(255, 128, 0);

Copyright 2008 by Pearson Education
4

Color orange = new Color(255, 128, 0);

� The variable contains an address to find the object in memory

orange

red 255

green 128

blue 0

darker()

brighter()

…



Calling methods of objects

� Objects have methods that your program can call.

� The methods often relate to the data inside the object.

� Syntax:
<object> . <method name> ( <parameters> )

Copyright 2008 by Pearson Education
5

� Examples:

DrawingPanel p = new DrawingPanel(100, 100); 
Color orange = new Color(255, 128, 0); 
p. setBackground( orange. darker()) ;



Value and
reference semantics

reading: 3.3, 4.3

Copyright 2008 by Pearson Education

reading: 3.3, 4.3



Swapping values
public static void main(String[] args) {

int a = 7;
int b = 35;

// swap a with b (incorrectly)
a = b;
b = a;

Copyright 2008 by Pearson Education
7

System.out.println(a + " " + b);
}

� What is wrong with this code?  What is its output?

� The red code should be replaced with:

int temp = a;
a = b;
b = temp;



A swap method?

� The following swap method does not work?  Why not?

public static void main(String[] args) {
int a = 7;
int b = 35;

// swap a with b
swap(a, b);

Copyright 2008 by Pearson Education
8

swap(a, b);

System.out.println(a + " " + b);
}

public static void swap(int a, int b) {
int temp = a;
a = b;
b = temp;

}



Value semantics

� value semantics: Behavior where variables are copied 

when assigned to each other or passed as parameters.

� One primitive variable assigned to another gets a copy of the value.

� Modifying the value of one variable does not affect others.

Copyright 2008 by Pearson Education
9

int x = 5;
int y = x ;     // x = 5, y = 5
x = 8;         // x = 8, y = 5
y = 17;        // x = 8, y = 17

x

y



Reference semantics

� reference semantics: Behavior where multiple variables 
can refer to a common value (object).

� Reference variables store an object's address in memory.

� Why is it done this way?

� efficiency.  Copying large objects slows down a program.

Copyright 2008 by Pearson Education
10

� efficiency.  Copying large objects slows down a program.

� sharing. It's useful to share an object's data among methods.

DrawingPanel p1 = new DrawingPanel(100, 100);

height 100

width 100

bgColor

setBackground()

… red 255

green 128

blue 0

darker()

brighter()

…

p1



Multiple references

� If one reference variable is assigned to another, the object 

is not copied.  The variables share the object.

� Calling methods on either variable modifies the same object.

DrawingPanel p1 = new DrawingPanel(120, 50);

DrawingPanel p2 = new DrawingPanel(100, 100);

Copyright 2008 by Pearson Education
11

DrawingPanel p2 = new DrawingPanel(100, 100);

DrawingPanel p3 = p2;

// No new panel pops up

p3.setBackground (orange);
// Changes color of 
// single 100x100 panel

p1

p2

p3

height 50

width 120

bgColor

setBackground()

…

height 100

width 100

bgColor

setBackground()

…



Objects as parameters

� When objects are passed, they are shared, not copied.

� You can pass an object to a method, let the method change 
its data, and the caller will also see that change.

public static void main(String[] args) {
DrawingPanel p = new DrawingPanel(100,100);
Graphics gr = p.getGraphics();

Copyright 2008 by Pearson Education
12

Graphics gr = p.getGraphics();
example1( gr );
example2( gr );

}

public static void example1(Graphics g) {
g.drawRect(10,10,10,10);

} 

public static void example2(Graphics g) {
g.drawRect(80,80,10,10);

}



String objects

reading: 3.3, 4.4

Copyright 2008 by Pearson Education

reading: 3.3, 4.4

self-check: Chap. 4 #12, 15

exercises: Chap. 4 #15, 16



Strings

� String: An object storing a sequence of text characters.

� Unlike most other objects, a String is not created with new.

String <name> = " <text>";

String <name> = <expression>;

Copyright 2008 by Pearson Education
14

� Examples:

String name = "Marla Singer";

int x = 3;
int y = 5;
String point = "(" + x + ", " + y + ")";



Indexes

� The characters are numbered with 0-based indexes:

String name = "P. Diddy";

index 0 1 2 3 4 5 6 7

char P . D i d d y
name

Copyright 2008 by Pearson Education
15

� The individual characters are values of type char (seen later)

char P . D i d d y



String methods

Method name Description

indexOf( str) index where the start of the given string 
appears in this string (-1 if it is not there)

length() number of characters in this string

substring( index1, index2) the characters in this string from index1

Copyright 2008 by Pearson Education
16

� These methods are called using the dot notation:

String message = "and Dr. Dre said";
System.out.println( message.length() );   // 16

substring( index1, index2)

or

substring( index1)

the characters in this string from index1
(inclusive) to index2 (exclusive);

if index2 omitted, grabs till end of string

toLowerCase() a new string with all lowercase letters

toUpperCase() a new string with all uppercase letters



String method examples
//     index 012345678901
String s1 = "Stuart Reges";
String s2 = "Marty Stepp";
System.out.println( s1.length() );            // 12
System.out.println( s1.indexOf("e") );        // 8
System.out.println( s1.substring(7, 10) );    // Reg

Copyright 2008 by Pearson Education
17

String s3 = s2.substring(3, 8);
System.out.println( s3.toLowerCase() );       // ty st

� Given the following string:

//             0123456789012345678901
String book = "Building Java Programs";

� How would you extract the word "Java" ?

� Change book to store "BUILDING JAVA PROGRAMS" .

� How would you extract the first word from any string?



Modifying strings

� Methods like substring , toLowerCase , toUpperCase , etc. 

actually create and return a new string:

String s = "lil bow wow";
s.toUpperCase();
System.out.println(s);   // lil bow wow

Copyright 2008 by Pearson Education
18

� To modify the variable, you must reassign it:

String s = "lil bow wow";
s = s.toUpperCase();
System.out.println(s);   // LIL BOW WOW



Comparing objects

� Relational operators such as < and == fail on objects.

� The == operator on String s often evaluates to false even 
when two String s have the same letters.

� Example (bad code):

Copyright 2008 by Pearson Education
19

Scanner console = new Scanner(System.in);
System.out.print("What is your name? ");
String name = console.next();
if ( name == "Barney" ) {

System.out.println("I love you, you love me,");
System.out.println("We're a happy family!");

}

� This code will compile, but it will never print the song.



The equals method

� Objects (e.g. String , Color ) should be compared using a 

method named equals .

� Example:

Scanner console = new Scanner(System.in);

Copyright 2008 by Pearson Education
20

Scanner console = new Scanner(System.in);
System.out.print("What is your name? ");
String name = console.next();
if ( name.equals("Barney") ) {

System.out.println("I love you, you love me,");
System.out.println("We're a happy family!");

}



== vs. equals

� == compares whether two variables refer to the same object.

� equals compares whether two objects have the same state.

� Given the following code:

Color orange = new Color(255, 128, 0);
Color o = new Color(255, 128, 0);

Copyright 2008 by Pearson Education
21

Color o = new Color(255, 128, 0);
Color o1 = o;

� Which tests are true?

orange == o

orange == o1

o == o1

orange.equals(o)

orange.equals(o1)

o.equals(o1)

orange

o

o1

red 255

green 128

blue 0

darker ()

brighter()

…

red 255

green 128

blue 0

darker()

brigher()

…



String test methods

Method Description

equals( str) whether two strings contain the same characters

equalsIgnoreCase( str) whether two strings contain the same characters, 
ignoring upper vs. lower case

startsWith( str) whether one contains other's characters at start

Copyright 2008 by Pearson Education
22

String name = console.next();

if ( name.startsWith("Dr.") ) {
System.out.println("Is he single?");

} else if ( name.equalsIgnoreCase("LUMBERG") ) {
System.out.println("I need your TPS reports.");

}

endsWith( str) whether one contains other's characters at end



Strings question

� Write a program that judges a couplet by giving it one point if it

� is composed of two verses with lengths within 4 chars of each other,

� "rhymes" (the two verses end with the same last two letters), 

� alliterates (the two verses begin with the same letter).

� A couplet which gets 2 or more points is "good"

Copyright 2008 by Pearson Education
23

Example logs of execution:
(run #1)
First verse: I joined the CS party
Second verse: Like "LN" and Marty
2 points: Keep it up, lyrical genius!

(run #2)
First verse: And it's still about the Benjamins
Second verse: Big faced hundreds and whatever other synonyms
0 points: Aw, come on.  You can do better...



Strings answer
// Determines whether a two-verse lyric is "good."
import java.util.*;

public class CheckCouplet {
public static void main(String[] args) {

System.out.println("Let's check that couplet!\n");
Scanner console = new Scanner(System.in);
System.out.print("First verse: ");
String verse1 = console.nextLine().toLowerCase();
System.out.print("Second verse: ");
String verse2 = console.nextLine().toLowerCase();
int points = 0;

Copyright 2008 by Pearson Education
24

int points = 0;

// check lengths
if(Math.abs(verse1.length() - verse2.length()) <= 4)  {

points++;
}

// check whether they end with the same two letters
if(verse2.length() >= 2 &&

verse1.endsWith(verse2.substring(verse2.length() - 2 )));
points++;

}

// check whether they alliterate
if(verse1.startsWith(verse2.substring(0, 1))) {

points++;
}

}
}


