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Building Java Programs

Chapter 5:
Program Logic and Indefinite Loops

Lecture 5-1: while Loops,

Fencepost Loops, and Sentinel Loops
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The Big Picture

� Looping is crucially important in most programs

� knowing the common patterns saves programming time

� Often, the programmer doesn't know how long to loop for

� most applications soliciting user input

� game loop

� web servers
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Fencepost loops

reading: 4.1

self-check: 2

exercises: 2, 4, 5, 8
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A fencepost problem

� Write a method printNumbers that prints each number 

from 1 to a given maximum, separated by commas.

For example, the call:

printNumbers(5)

should print:

1, 2, 3, 4, 5
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Flawed solutions
� public static void printNumbers(int max) {

for (int i = 1; i <= max; i++) {
System.out.print(i + ", " );

}
System.out.println();  // to end the line of output

}

� Output from printNumbers(5): 1, 2, 3, 4, 5, 

� public static void printNumbers(int max) {
for (int i = 1; i <= max; i++) {

System.out.print(", " + i );
}
System.out.println();  // to end the line of output

}

� Output from printNumbers(5): , 1, 2, 3, 4, 5
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Fence post analogy

� We print n numbers but need only n - 1 commas.

� Similar to building a fence with wires separated by posts.

� If we repeatedly place a post+wire, 

the last post will have an extra dangling wire.

� A flawed algorithm:

for (length of fence) {

place a post.

place some wire.

}
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Fencepost loop

� Add a statement outside the loop to place the initial "post."

� Also called a fencepost loop or a "loop-and-a-half" solution.

� The revised algorithm:

place a post.

for (length of fence - 1) {

place some wire.

place a post.

}
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Fencepost method solution

� A version of printNumbers that works:

public static void printNumbers(int max) {

System.out.print(1);

for (int i = 2; i <= max; i++) {

System.out.print(", " + i);
}

System.out.println();  // to end the line

}

Output from printNumbers(5):
1, 2, 3, 4, 5



Copyright 2008 by Pearson Education
9

A second solution

� Either the first or the last "post" can be taken out of the loop:

public static void printNumbers(int max) {
for (int i = 1; i < max ; i++) {

System.out.print(i + ", " );

}

System.out.println(max); // end line

}

� The output is identical; pick the one that makes most sense to you
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Fencepost question

� Write a method printPrimes that prints all prime numbers 

up to a given maximum in the following format.

� Example: printPrimes(50) prints

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]

� To find primes, write a method countFactors which 

returns the number of factors an integer has
� countFactors(60) returns 12 because 

1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60 are factors of 60.
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Fencepost answer

public class Primes {
public static void main(String[] args) {

printPrimes(50);
printPrimes(1000);

}

// Prints all prime numbers up to the given max.
public static void printPrimes(int max) {

System.out.print("[2");
for (int i = 3; i <= max; i++) {

if (countFactors(i) == 2) {
System.out.print(", " + i);

}
}
System.out.println("]");

}
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Fencepost answer, continued
// Returns how many factors the given number has.
// Note: this is also in Ch4-1 slides

public static int countFactors(int number) {
int count = 0;
for (int i = 1; i <= number; i++) {

if (number % i == 0) {
count++;  // i is a factor of number

}
}
return count;

}
}
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while loops

reading: 5.1

self-check: 1 - 10

exercises: 1 - 2
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Definite loops

� definite loop: executes a known number of times.

� The for loops we have seen so far are definite loops.

� Examples:

� Print "hello" 10 times.

� Find all the prime numbers up to an integer n.

� Print each odd number between 5 and 127.
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Indefinite loops

� indefinite loop: the number of times its body repeats is 
not known in advance.

� The while loops we'll see in this chapter are indefinite loops.

� Examples:

� Prompt the user until they type a non-negative number.

� Print random numbers until a prime number is printed.

� Continue looping while the user has not typed "n" to quit.
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The while loop

� while loop: Executes as long as a test is true.

while (<test>) {
<statement(s)> ;

}

� Example:
int num = 1; // initialization

while (num <= 200) { // test

System.out.print(num + " ");
num = num * 2; // update

}

� OUTPUT:

1 2 4 8 16 32 64 128
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for vs while loops

� The for loop is a specialized form of the while loop.

� Equivalent:

for (int num = 1; num <= 200; num = num * 2) {
System.out.print(num + " ");

}

int num = 1; 

while (num <= 200) { 

System.out.print(num + " ");

num = num * 2; 

}

� Stylistically, it is better to use a for loop when looping 

over a series of values
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Example while loop

// finds number's first factor other than 1
Scanner console = new Scanner(System.in);
System.out.print("Type a number: ");
int number = console.nextInt();
int factor = 2;
while (number % factor != 0) {

factor++;
}
System.out.println("First factor: " + factor);

� Example log of execution:

Type a number: 91

First factor: 7
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while loop question

� Write code that repeatedly prompts until the user types a 
non-negative number, then computes its square root.

� Example log of execution:

Type a non-negative integer: -5

Invalid number, try again: -1

Invalid number, try again: -235

Invalid number, try again: -87

Invalid number, try again: 121

The square root of 121 is 11.0
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while loop answer

� Solution:

System.out.print("Type a non-negative integer: ");
int number = console.nextInt();

while (number < 0) {
System.out.print("Invalid number, try again: ");
number = console.nextInt();

}

System.out.println("The square root of " + number + 
" is " + Math.sqrt(number) );

� Notice that number has to be declared outside the loop.
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Sentinel loops

reading: 5.1

self-check: 5

exercises: 1, 2
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� sentinel: A value that signals the end of user input.

� sentinel loop: Repeats until a sentinel value is seen.

� Example: Write a program that repeatedly prompts the user 
for numbers until the user types 0, then outputs their sum.

(In this case, 0 is the sentinel value.)

Enter a number (0 to quit): 95
Enter a number (0 to quit): 87
Enter a number (0 to quit): 42
Enter a number (0 to quit): 26
Enter a number (0 to quit): 0
The total is 250

Sentinel values
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Flawed sentinel solution

� What's wrong with this solution?

Scanner console = new Scanner(System.in);

int sum = 0;

int number = 1;   // "dummy value", anything but 0

while (number != 0) {
System.out.print("Enter a number (0 to quit): ");

number = console.nextInt();

sum = sum + number;

}

System.out.println("The total is " + sum);
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A different sentinel value

� Modify your program to use a sentinel value of -1.

Enter a number (-1 to quit): 95
Enter a number (-1 to quit): 87

Enter a number (-1 to quit): 42

Enter a number (-1 to quit): 26

Enter a number (-1 to quit): -1

The total is 250
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Changing the sentinel value

� To see the problem, change the sentinel's value to -1:

Scanner console = new Scanner(System.in);
int sum = 0;
int number = 1;  // "dummy value", anything but -1

while (number != -1 ) {
System.out.print("Enter a number (-1 to quit): ");
number = console.nextInt();
sum += number;

}

System.out.println("The total is " + sum);

� Now the solution produces the wrong output.  Why?

The total was 249
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The problem

� Our code uses a pattern like this:

sum = 0.

while (input is not the sentinel) {

prompt for input; read input.

add input to the sum.

}

� On the last pass, the sentinel -1 is added to the sum:

prompt for input; read input (-1).

add input (-1) to the sum.

� This is a fencepost problem.

� We must read N numbers, but only sum the first N-1 of them.
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A fencepost solution

� We need to use a pattern like this:

sum = 0.

prompt for input; read input. // place a "post"

while (input is not the sentinel) {

add input to the sum. // place a "wire"

prompt for input; read input. // place a "post"

}

� Sentinel loops often utilize a fencepost "loop-and-a-half" 

solution by pulling some code out of the loop.
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Correct code

� This solution produces the correct output:

Scanner console = new Scanner(System.in);
int sum = 0;
System.out.print("Enter a number (-1 to quit): ");
int number = console.nextInt();

while (number != -1) {
sum = sum + number; // moved to top of loop
System.out.print("Enter a number (-1 to quit): ");
number = console.nextInt();

}

System.out.println("The total is " + sum);
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Constant with sentinel

� A better solution uses a constant for the sentinel:
public static final int SENTINEL = -1;

� This solution uses the constant:

Scanner console = new Scanner(System.in);
int sum = 0;
System.out.print("Enter a number (" + SENTINEL + " to quit): ");
int number = console.nextInt();

while (number != SENTINEL) {
sum = sum + number;

System.out.print("Enter a number (" + SENTINEL + " to quit): ");
number = console.nextInt();

}

System.out.println("The total is " + sum);


