
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 5:
Program Logic and Indefinite Loops

Lecture 5-1: while Loops,

Fencepost Loops, and Sentinel Loops

Copyright 2008 by Pearson Education
2

The Big Picture

� Looping is crucially important in most programs

� knowing the common patterns saves programming time

� Often, the programmer doesn't know how long to loop for

� most applications soliciting user input

� game loop

� web servers

Copyright 2008 by Pearson Education

Fencepost loops

reading: 4.1

self-check: 2

exercises: 2, 4, 5, 8

Copyright 2008 by Pearson Education
4

A fencepost problem

� Write a method printNumbers that prints each number

from 1 to a given maximum, separated by commas.

For example, the call:

printNumbers(5)

should print:

1, 2, 3, 4, 5

Copyright 2008 by Pearson Education
5

Flawed solutions
� public static void printNumbers(int max) {

for (int i = 1; i <= max; i++) {
System.out.print(i + ", ");

}
System.out.println(); // to end the line of output

}

� Output from printNumbers(5): 1, 2, 3, 4, 5,

� public static void printNumbers(int max) {
for (int i = 1; i <= max; i++) {

System.out.print(", " + i);
}
System.out.println(); // to end the line of output

}

� Output from printNumbers(5): , 1, 2, 3, 4, 5

Copyright 2008 by Pearson Education
6

Fence post analogy

� We print n numbers but need only n - 1 commas.

� Similar to building a fence with wires separated by posts.

� If we repeatedly place a post+wire,

the last post will have an extra dangling wire.

� A flawed algorithm:

for (length of fence) {

place a post.

place some wire.

}

Copyright 2008 by Pearson Education
7

Fencepost loop

� Add a statement outside the loop to place the initial "post."

� Also called a fencepost loop or a "loop-and-a-half" solution.

� The revised algorithm:

place a post.

for (length of fence - 1) {

place some wire.

place a post.

}

Copyright 2008 by Pearson Education
8

Fencepost method solution

� A version of printNumbers that works:

public static void printNumbers(int max) {

System.out.print(1);

for (int i = 2; i <= max; i++) {

System.out.print(", " + i);
}

System.out.println(); // to end the line

}

Output from printNumbers(5):
1, 2, 3, 4, 5

Copyright 2008 by Pearson Education
9

A second solution

� Either the first or the last "post" can be taken out of the loop:

public static void printNumbers(int max) {
for (int i = 1; i < max ; i++) {

System.out.print(i + ", ");

}

System.out.println(max); // end line

}

� The output is identical; pick the one that makes most sense to you

Copyright 2008 by Pearson Education
10

Fencepost question

� Write a method printPrimes that prints all prime numbers

up to a given maximum in the following format.

� Example: printPrimes(50) prints

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]

� To find primes, write a method countFactors which

returns the number of factors an integer has
� countFactors(60) returns 12 because

1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60 are factors of 60.

Copyright 2008 by Pearson Education
11

Fencepost answer

public class Primes {
public static void main(String[] args) {

printPrimes(50);
printPrimes(1000);

}

// Prints all prime numbers up to the given max.
public static void printPrimes(int max) {

System.out.print("[2");
for (int i = 3; i <= max; i++) {

if (countFactors(i) == 2) {
System.out.print(", " + i);

}
}
System.out.println("]");

}

Copyright 2008 by Pearson Education
12

Fencepost answer, continued
// Returns how many factors the given number has.
// Note: this is also in Ch4-1 slides

public static int countFactors(int number) {
int count = 0;
for (int i = 1; i <= number; i++) {

if (number % i == 0) {
count++; // i is a factor of number

}
}
return count;

}
}

Copyright 2008 by Pearson Education

while loops

reading: 5.1

self-check: 1 - 10

exercises: 1 - 2

Copyright 2008 by Pearson Education
14

Definite loops

� definite loop: executes a known number of times.

� The for loops we have seen so far are definite loops.

� Examples:

� Print "hello" 10 times.

� Find all the prime numbers up to an integer n.

� Print each odd number between 5 and 127.

Copyright 2008 by Pearson Education
15

Indefinite loops

� indefinite loop: the number of times its body repeats is
not known in advance.

� The while loops we'll see in this chapter are indefinite loops.

� Examples:

� Prompt the user until they type a non-negative number.

� Print random numbers until a prime number is printed.

� Continue looping while the user has not typed "n" to quit.

Copyright 2008 by Pearson Education
16

The while loop

� while loop: Executes as long as a test is true.

while (<test>) {
<statement(s)> ;

}

� Example:
int num = 1; // initialization

while (num <= 200) { // test

System.out.print(num + " ");
num = num * 2; // update

}

� OUTPUT:

1 2 4 8 16 32 64 128

Copyright 2008 by Pearson Education
17

for vs while loops

� The for loop is a specialized form of the while loop.

� Equivalent:

for (int num = 1; num <= 200; num = num * 2) {
System.out.print(num + " ");

}

int num = 1;

while (num <= 200) {

System.out.print(num + " ");

num = num * 2;

}

� Stylistically, it is better to use a for loop when looping

over a series of values

Copyright 2008 by Pearson Education
18

Example while loop

// finds number's first factor other than 1
Scanner console = new Scanner(System.in);
System.out.print("Type a number: ");
int number = console.nextInt();
int factor = 2;
while (number % factor != 0) {

factor++;
}
System.out.println("First factor: " + factor);

� Example log of execution:

Type a number: 91

First factor: 7

Copyright 2008 by Pearson Education
19

while loop question

� Write code that repeatedly prompts until the user types a
non-negative number, then computes its square root.

� Example log of execution:

Type a non-negative integer: -5

Invalid number, try again: -1

Invalid number, try again: -235

Invalid number, try again: -87

Invalid number, try again: 121

The square root of 121 is 11.0

Copyright 2008 by Pearson Education
20

while loop answer

� Solution:

System.out.print("Type a non-negative integer: ");
int number = console.nextInt();

while (number < 0) {
System.out.print("Invalid number, try again: ");
number = console.nextInt();

}

System.out.println("The square root of " + number +
" is " + Math.sqrt(number));

� Notice that number has to be declared outside the loop.

Copyright 2008 by Pearson Education

Sentinel loops

reading: 5.1

self-check: 5

exercises: 1, 2

Copyright 2008 by Pearson Education
22

� sentinel: A value that signals the end of user input.

� sentinel loop: Repeats until a sentinel value is seen.

� Example: Write a program that repeatedly prompts the user
for numbers until the user types 0, then outputs their sum.

(In this case, 0 is the sentinel value.)

Enter a number (0 to quit): 95
Enter a number (0 to quit): 87
Enter a number (0 to quit): 42
Enter a number (0 to quit): 26
Enter a number (0 to quit): 0
The total is 250

Sentinel values

Copyright 2008 by Pearson Education
23

Flawed sentinel solution

� What's wrong with this solution?

Scanner console = new Scanner(System.in);

int sum = 0;

int number = 1; // "dummy value", anything but 0

while (number != 0) {
System.out.print("Enter a number (0 to quit): ");

number = console.nextInt();

sum = sum + number;

}

System.out.println("The total is " + sum);

Copyright 2008 by Pearson Education
24

A different sentinel value

� Modify your program to use a sentinel value of -1.

Enter a number (-1 to quit): 95
Enter a number (-1 to quit): 87

Enter a number (-1 to quit): 42

Enter a number (-1 to quit): 26

Enter a number (-1 to quit): -1

The total is 250

Copyright 2008 by Pearson Education
25

Changing the sentinel value

� To see the problem, change the sentinel's value to -1:

Scanner console = new Scanner(System.in);
int sum = 0;
int number = 1; // "dummy value", anything but -1

while (number != -1) {
System.out.print("Enter a number (-1 to quit): ");
number = console.nextInt();
sum += number;

}

System.out.println("The total is " + sum);

� Now the solution produces the wrong output. Why?

The total was 249

Copyright 2008 by Pearson Education
26

The problem

� Our code uses a pattern like this:

sum = 0.

while (input is not the sentinel) {

prompt for input; read input.

add input to the sum.

}

� On the last pass, the sentinel -1 is added to the sum:

prompt for input; read input (-1).

add input (-1) to the sum.

� This is a fencepost problem.

� We must read N numbers, but only sum the first N-1 of them.

Copyright 2008 by Pearson Education
27

A fencepost solution

� We need to use a pattern like this:

sum = 0.

prompt for input; read input. // place a "post"

while (input is not the sentinel) {

add input to the sum. // place a "wire"

prompt for input; read input. // place a "post"

}

� Sentinel loops often utilize a fencepost "loop-and-a-half"

solution by pulling some code out of the loop.

Copyright 2008 by Pearson Education
28

Correct code

� This solution produces the correct output:

Scanner console = new Scanner(System.in);
int sum = 0;
System.out.print("Enter a number (-1 to quit): ");
int number = console.nextInt();

while (number != -1) {
sum = sum + number; // moved to top of loop
System.out.print("Enter a number (-1 to quit): ");
number = console.nextInt();

}

System.out.println("The total is " + sum);

Copyright 2008 by Pearson Education
29

Constant with sentinel

� A better solution uses a constant for the sentinel:
public static final int SENTINEL = -1;

� This solution uses the constant:

Scanner console = new Scanner(System.in);
int sum = 0;
System.out.print("Enter a number (" + SENTINEL + " to quit): ");
int number = console.nextInt();

while (number != SENTINEL) {
sum = sum + number;

System.out.print("Enter a number (" + SENTINEL + " to quit): ");
number = console.nextInt();

}

System.out.println("The total is " + sum);

