
Building Java Programs

Chapter 5:

Copyright 2008 by Pearson Education

Chapter 5:
Program Logic and Indefinite Loops

Lecture 5-2: Random Numbers and Boolean Logic

The Big Picture

� Many interesting programs require random behavior

� dealing out cards for solitaire

� simulating processes like evolution or the stock market

� We often want methods that answer questions

Copyright 2008 by Pearson Education
2

� We often want methods that answer questions

� did the user get a new high score?

� is the password the user has entered correct?

� did the user/computer get a royal flush?

Random numbers

reading: 5.1

Copyright 2008 by Pearson Education

reading: 5.1

self-check: #8 - 10

exercises: #3 - 6, 10

The Random class

� Random objects generate pseudo-random numbers.

� Class Random is found in the java.util package.

import java.util.*;

Method name Description

nextInt() returns a random integer

Copyright 2008 by Pearson Education
4

� Example:

Random rand = new Random();
int randomNumber = rand.nextInt(10);
// randomNumber has a random value between 0 and 9

nextInt() returns a random integer

nextInt(max) returns a random integer in the range [0, max)

in other words, 0 to max-1 inclusive

nextDouble() returns a random real number in the range [0.0, 1.0)

Generating random numbers

� Common usage: to get a random number from 1 to N

int n = rand.nextInt(20) + 1; // 1-20 inclusive

� To get a number in arbitrary range [min, max]:

nextInt(<size of range>) + <min>

Copyright 2008 by Pearson Education
5

nextInt(<size of range>) + <min>

where <size of range> is <max> - <min> + 1

� Example: A random integer between 5 and 10 inclusive:

int n = rand.nextInt(6) + 5;

Pseudo-random?!

� The numbers are generated algorithmically

� there's some formula which takes a seed as input

� a good seed might be the position of the mouse or the time

� the seed has a finite number of possible values

Copyright 2008 by Pearson Education
6

� Generating truly random numbers

� point a camera at a lava lamp

� measure radioactive decay

Randomquestions

� Given the following declaration, how would you get:

Random rand = new Random();

� A random number between 1 and 100 inclusive?

� Given the following declaration, how would you get:

Random rand = new Random();

� A random number between 1 and 100 inclusive?

int random1 = rand.nextInt(100) + 1;

Copyright 2008 by Pearson Education
7

� A random number between 50 and 100 inclusive?

� A random number between 4 and 17 inclusive?

int random1 = rand.nextInt(100) + 1;

� A random number between 50 and 100 inclusive?

int random2 = rand.nextInt(51) + 50;

� A random number between 4 and 17 inclusive?

int random3 = rand.nextInt(14) + 4;

Random: not only for ints

� Often, the values that need to be generated aren't numeric

� 5 cards to deal out for poker

� a series of coin tosses

� a day of the week to assign a chore

Copyright 2008 by Pearson Education
8

� The possible values can be mapped to integers

� code to randomly play Rock-Paper-Scissors:

int r = rand.nextInt(3);
if (r == 0) {

System.out.println("Rock");
} else if (r == 1) {

System.out.println("Paper");
} else {

System.out.println("Scissors");
}

Random double values

� nextDouble method returns a double between 0.0 - 1.0

� Example: Get a random GPA value between 1.5 and 4.0:

double randomGpa = rand.nextDouble() * 2.5 + 1.5;

Copyright 2008 by Pearson Education
9

Randomquestion

� Write a program that simulates rolling of two 6-sided dice
until their combined result comes up as 7.

2 + 4 = 6
3 + 5 = 8
5 + 6 = 11

Copyright 2008 by Pearson Education
10

5 + 6 = 11
1 + 1 = 2
4 + 3 = 7
You won after 5 tries!

Randomanswer
// Rolls two dice until a sum of 7 is reached.

import java.util.*;

public class Roll {

public static void main(String[] args) {

Random rand = new Random();

int sum = 0;

Copyright 2008 by Pearson Education
11

int tries = 0;

while (sum != 7) {

int roll1 = rand.nextInt(6) + 1;

int roll2 = rand.nextInt(6) + 1;

sum = roll1 + roll2;

System.out.println(roll1 + " + " + roll2 + " = " + sum);

tries++;

}

System.out.println("You won after " + tries + " tries!");

}

}

Boolean logic

reading: 5.2

Copyright 2008 by Pearson Education

reading: 5.2

self-check: #11 - 17

exercises: #12

Type boolean

� boolean: Represents logical values of true or false .

� A <condition> in an if , for , while is a boolean expression.

boolean minor = (age < 21);
boolean expensive = (iPhonePrice > 200.00);
boolean iLoveCS = true;

Copyright 2008 by Pearson Education
13

boolean iLoveCS = true;

if (minor) {
System.out.println("Can't purchase alcohol!");

}
if (iLoveCS || !expensive) {

System.out.println("Buying an iPhone");
}

� You can create boolean variables, pass boolean parameters,

return boolean values from methods, ...

Methods that return boolean

� Methods can return boolean values.

� A call to such a method can be a loop or if 's <test>.

Scanner console = new Scanner(System.in);

System.out.print("Type your name: ");

String line = console.nextLine ();

Copyright 2008 by Pearson Education
14

String line = console.nextLine ();

if (line.startsWith("Dr.")) {

System.out.println("Will you marry me?");

} else if (line.endsWith(", Esq.")) {

System.out.println("And I am Ted 'Theodore' Logan!");

}

Writing boolean methods

public static boolean bothOdd(int n1, int n2) {

if (n1 % 2 != 0 && n2 % 2 != 0) {

return true;

} else {

return false;

}

Copyright 2008 by Pearson Education
15

}

}

� Calls to this methods can now be used as tests:

if (bothOdd(7, 13)) {

...

}

"Boolean Zen"

� Methods that return a boolean result often have an
if/else statement:

public static boolean bothOdd(int n1, int n2) {
if (n1 % 2 != 0 && n2 % 2 != 0) {

return true;
} else {

Copyright 2008 by Pearson Education
16

} else {
return false;

}
}

� ... but the if/else is sometimes unnecessary.

� The if/else 's condition is itself a boolean expression;

its value is exactly what you want to return. So do that!

public static boolean bothOdd(int n1, int n2) {
return (n1 % 2 != 0 && n2 % 2 != 0);

}

"Boolean Zen" template

� Replace:

public static boolean <name>(<parameters>) {
if (<condition>) {

return true;
} else {

return false;

Copyright 2008 by Pearson Education
17

return false;
}

}

� with:

public static boolean <name>(<parameters>) {
return <condition>;

}

Random/while question

� Write a multiplication tutor program.
� Use a static method that returns a boolean value.
� Test multiplication of numbers between 1 and 20.
� The program stops after an incorrect answer.

14 * 8 = 112
Correct!

Copyright 2008 by Pearson Education
18

Correct!
5 * 12 = 60
Correct!
8 * 3 = 24
Correct!
5 * 5 = 25
Correct!
20 * 14 = 280
Correct!
19 * 14 = 256
Incorrect; the answer was 266
You solved 5 correctly.

Random/while answer
import java.util.*;

// Asks the user to do multiplication problems and scores them.
public class MultTutor {

public static void main(String[] args) {
Scanner console = new Scanner(System.in);
Random rand = new Random();

Copyright 2008 by Pearson Education
19

// loop until user gets one wrong
int correct = 0;
while (askQuestion(console, rand)) {

correct++;
}

System.out.println("You solved " + correct + " correctly.");
}

...

Random/while answer 2
...

// Asks the user one multiplication problem,
// returning true if they get it right and false if not.
public static boolean askQuestion(Scanner console, Random rand) {

// pick two random numbers between 1 and 20 inclusive
int num1 = rand.nextInt(20) + 1;
int num2 = rand.nextInt (20) + 1;

Copyright 2008 by Pearson Education
20

int num2 = rand.nextInt (20) + 1;

System.out.print(num1 + " * " + num2 + " = ");
int guess = console.nextInt();
if (guess == num1 * num2) {

System.out.println("Correct!");
return true;

} else {
System.out.println("Incorrect; the correct answer was " +

(num1 * num2));
return false;

}
}

}

boolean questions

� Modify our previous Primes program to use a isFactor method

rather than a countFactors method.

� Example output of primes up to 50:

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]

Copyright 2008 by Pearson Education
21

� Write methods with return values to tell whether two words

rhyme and/or alliterate.

� Example log of execution:

Type two words: car STAR

They rhyme but don't alliterate.

boolean answer
// Determines whether two words rhyme and/or start with the same letter.
import java.util.*;

public class Rhyme {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);
System.out.print("Type two words: ");
String word1 = console.next();
String word2 = console.next ();

Copyright 2008 by Pearson Education
22

String word2 = console.next ();

if(rhyme(word1, word2) && alliterate(word1, word2)) {
System.out.println("They rhyme and alliterate");

} else if(rhyme(word1, word2)) {
System.out.println("They rhyme but don't alliterate");

} else if(alliterate(word1, word2)) {
System.out.println("They alliterate but don't rhyme");

} else {
System.out.println("They don't rhyme or alliterate");

}
}
...

boolean answer, continued
// Returns true if s1 and s2 end with the same two letters.

public static boolean rhyme(String s1, String s2) {
return s2.length() >= 2 &&

s1.endsWith(s2.substring(s2.length() - 2));
}

// Returns true if s1 and s2 start with the same letter.
public static boolean alliterate(String s1, String s2) {

return s1.startsWith(s2.substring(0, 1));

Copyright 2008 by Pearson Education
23

return s1.startsWith(s2.substring(0, 1));
}

}

