
Building Java Programs

Chapter 5:

Copyright 2008 by Pearson Education

Chapter 5:

Program Logic and Indefinite Loops

Lecture 5-3: Assertions and do/while loops

The Big Picture

� we have to be able to "play computer"

� know about the state of our variables

� understand the different programming constructs

� indefinite loop variations (NOT on midterm)

Copyright 2008 by Pearson Education
2

� indefinite loop variations (NOT on midterm)

� the do/while loop

� the break statement

Logical assertions

reading: 5.5

Copyright 2008 by Pearson Education

reading: 5.5

self-checks: #26-28

Logical assertions

� assertion: A statement that is either true or false.

Examples:

� Java was created in 1995.

� The sky is purple.

Copyright 2008 by Pearson Education
4

� The sky is purple.

� 23 is a prime number.

� 10 is greater than 20.

� x divided by 2 equals 7. (depends on the value of x)

Reasoning about assertions

� Suppose you have the following

if (x > 3) {

// Point A

} else {

// Point B

Copyright 2008 by Pearson Education
5

// Point B

}

// Point C

� What do you know at the different points?

� Is x > 3? Always? Sometimes? Never?

Assertions in code
� We can make assertions about our code and ask whether they

are true at various points in the code.
� Valid answers are ALWAYS, NEVER, or SOMETIMES.

System.out.print("Type a nonnegative number: ");
double number = console.nextDouble();
// Point A: is number < 0.0 here? (SOMETIMES)

Copyright 2008 by Pearson Education
6

// Point A: is number < 0.0 here?

while (number < 0.0) {
// Point B: is number < 0.0 here?
System.out.print("Negative; try again: ");

number = console.nextDouble();
// Point C: is number < 0.0 here?

}

// Point D: is number < 0.0 here?

(SOMETIMES)

(NEVER)

(SOMETIMES)

(NEVER)

Assertion example 1
public static int mystery(Scanner console) {

int prev = 0;
int count = 0;
int next = console.nextInt();
// Point A
while (next != 0) {

// Point B
if (next == prev) {

// Point C

Which of the following assertions are
true at which point(s) in the code?

Copyright 2008 by Pearson Education
7

// Point C
count++;

}
prev = next;
next = console.nextInt();
// Point D

}
// Point E
return count;

}

next == 0 prev == 0 next == prev

Point A

Point B

Point C

Point D

Point E

SOMETIMES ALWAYS SOMETIMES

NEVER SOMETIMES SOMETIMES

NEVER NEVER ALWAYS

SOMETIMES NEVER SOMETIMES

ALWAYS SOMETIMES SOMETIMES

true at which point(s) in the code?
Choose ALWAYS, NEVER, or SOMETIMES.

Assertion example 2
public static void mystery(int x, int y) {

int z = 0;

// Point A
while (x >= y) {

// Point B
x -= y;

Which of the following assertions are
true at which point(s) in the code?
Choose ALWAYS, NEVER, or SOMETIMES.

Copyright 2008 by Pearson Education
8

// Point C
z++;

// Point D
}

// Point E
System.out.println(z +

" " + x);
}

Choose ALWAYS, NEVER, or SOMETIMES.

x < y x == y z == 0

Point A

Point B

Point C

Point D

Point E

SOMETIMES SOMETIMES ALWAYS

NEVER SOMETIMES SOMETIMES

SOMETIMES SOMETIMES SOMETIMES

SOMETIMES SOMETIMES NEVER

ALWAYS NEVER SOMETIMES

Assertion example 3
// Assumes y >= 0, and returns x^y
public static int pow(int x, int y) {

int prod = 1;

// Point A
while (y > 0) {

// Point B
if (y % 2 == 0) {

// Point C
x *= x; y == 0 y % 2 == 0

Which of the following assertions are
true at which point(s) in the code?
Choose ALWAYS, NEVER, or SOMETIMES.

y == 0 y % 2 == 0

Copyright 2008 by Pearson Education
9

x *= x;
y /= 2;

// Point D
} else {

// Point E
prod *= x;
y--;
// Point F

}
// Point G

}
// Point H
return prod;

}

y == 0 y % 2 == 0

Point A

Point B

Point C

Point D

Point E

Point F

Point G

Point H

y == 0 y % 2 == 0

SOMETIMES SOMETIMES

NEVER SOMETIMES

NEVER ALWAYS

NEVER SOMETIMES

NEVER NEVER

SOMETIMES ALWAYS

SOMETIMES SOMETIMES

ALWAYS ALWAYS

Variations of
indefinite loops

reading: 5.4

Copyright 2008 by Pearson Education

reading: 5.4

self-checks: #22-25

exercises: #5-6

10

The do/while loop

� do/while loop: Executes statements repeatedly while a

condition is true, testing it at the end of each repetition.

do {
<statement(s)> ;

} while (<condition>);

Copyright 2008 by Pearson Education
11

} while (<condition>);

� Example:

// prompt until the user gets the right password
String phrase;
do {

System.out.print("Password: ");
phrase = console.next();

} while (!phrase.equals("abracadabra"));

do/while loop flow chart
� How does this differ from

the while loop?

� The controlled
<statement(s)> will
always execute the first
time, regardless of

Copyright 2008 by Pearson Education
12

time, regardless of
whether the <test> is
true or false.

do/while question

� Modify the previous dice program to use a do/while

� Example log of execution:

2 + 4 = 6
3 + 5 = 8
5 + 6 = 11

Copyright 2008 by Pearson Education
13

5 + 6 = 11
1 + 1 = 2
4 + 3 = 7
You won after 5 tries!

� Modify the previous Sentinel program to use a do/while.

do/while solution
// Rolls two dice until a sum of 7 is reached.
import java.util.*;

public class Roll {
public static void main(String[] args) {

Random rand = new Random();
int tries = 0;
int sum;

Copyright 2008 by Pearson Education
14

int sum;
do {

int roll1 = rand.nextInt(6) + 1;
int roll2 = rand.nextInt(6) + 1;
sum = roll1 + roll2;
System.out.println(roll1 + " + " + roll2 + " = " + sum);
tries++;

} while (sum != 7);

System.out.println("You won after " + tries + " tries!");
}

}

"Forever" loop with break

� break statement: Immediately exits a loop.
� Can be used to write a loop whose test is in the middle.
� Such loops are often called "forever" loops because their header's

boolean test is often changed to a trivial true.

� "forever" loop, general syntax:

while (true) {

Copyright 2008 by Pearson Education
15

while (true) {
<statement(s)> ;

if (<condition>) {
break;

}

<statement(s)> ;
}

� Exercise: Modify our Sentinel program to use break.

Sentinel loop with break

� A working sentinel loop solution using break:

Scanner console = new Scanner(System.in);
int sum = 0;
while (true) {

Copyright 2008 by Pearson Education
16

System.out.print("Enter a number (-1 to quit): ");
int number = console.nextInt();
if (number == -1) { // don't add -1 to sum

break;

}

sum = sum + number; // number != -1 here

}

System.out.println("The total was " + sum);

