
Building Java Programs

Chapter 7: Arrays

Copyright 2008 by Pearson Education

Chapter 7: Arrays

Lecture 7-3: More text processing,

file output

1

Remember: charAt method

� Strings are internally represented as char arrays

� String traversals are a common form of data manipulation

� There is no [] notation for Strings.

� There is no Scanner for breaking apart a String.

Copyright 2008 by Pearson Education
22

� There is no Scanner for breaking apart a String.

� We use the charAt method

charAt exercise

� Write a method named count which accepts a String and
a char as parameters. The method should return the
number of times the char appears in the String .

� Example:

int hCount = count("Oscar the grouch", 'h');

Copyright 2008 by Pearson Education
33

// hCount is 2

� Could we also re-write the replace method for String s?

� We can't directly access the array of char s

� How can we build a String ?

String newVerse = replace(" eat apples and bananas ",

'a', 'o');

// newVerse is "eot opples ond bononos"

charAt exercise solutions

public static int count(String s, char ch) {
int count = 0;
for(int i = 0; i < s.length(); i++) {

if(s.charAt(i) == ch) {
count++;

}
}
return count;

Copyright 2008 by Pearson Education
44

return count;
}

public static String replace(String s, char c1, char c2) {
String result = "";
for(int i = 0; i < s.length(); i++) {

if(s.charAt(i) == c1) {
result = result + c2;

} else {
result = result + s.charAt(i);

}
}
return result;

}

Section attendance problem

� Consider an input file of course attendance data:

111111101011111101001110110110110001110010100

111011111010100110101110101010101110101101010

110101011011011011110110101011010111011010101

Copyright 2008 by Pearson Education
55

� Each line represents a section (5 students, 9 weeks).

� 1 means the student attended; 0 not.

week1 week2 week3 week4 week5 week6 week7 week8 week9
11111 11010 11111 10100 11101 10110 11000 11100 10100

week2
student1 student2 student3 student4 student5
1 1 0 1 0

Section attendance problem

� Write a program that reads the preceding section data file

and produces the following output:

Section #1:
Sections attended: [9, 6, 7, 4, 3]
Student scores: [20, 18, 20, 12, 9]
Student grades: [100.0, 90.0, 100.0, 60.0, 45.0]

Copyright 2008 by Pearson Education
66

Student grades: [100.0, 90.0, 100.0, 60.0, 45.0]

Section #2:
Sections attended: [6, 7, 5, 6, 4]
Student scores: [18, 20, 15, 18, 12]
Student grades: [90.0, 100.0, 75.0, 90.0, 60.0]

Section #3:
Sections attended: [5, 6, 5, 7, 6]
Student scores: [15, 18, 15, 20, 18]
Student grades: [75.0, 90.0, 75.0, 100.0, 90.0]

Data transformations

� In this problem we go from 0s and 1s to student grades

� This is called transforming the data.

� Often each transformation is stored in its own array.

� We must map between the data and array indexes.

Copyright 2008 by Pearson Education
77

� We must map between the data and array indexes.

Examples:

� by position (store the i th value we read at index i)

� tally (if input value is i, store it at array index i)

� explicit mapping (count 'M' at index 0, count 'O' at index 1)

Plan of attack

� This is a complex problem, so let's break it down!

� We'll start by writing everything in main.

� Let's just get the section headings, first.

� Then we can compute sections attended, etc, one at a time.

� Eventually, the methods we need should be clear.

Copyright 2008 by Pearson Education
88

� Our goal: make main a good program summary.

Section attendance answer
// This program reads a file representing which stu dents attended
// which discussion sections and produces output of the students'
// section attendance and scores.

import java.io.*;
import java.util.*;

public class Sections {
public static void main(String[] args) throws FileN otFoundException {

Scanner input = new Scanner(new File("sections.txt"));
while (input.hasNextLine ()) {

Copyright 2008 by Pearson Education
99

while (input.hasNextLine ()) {
// process one section
String line = input.nextLine();
int[] attended = countAttended(line);
int[] points = computePoints(attended);
double[] grades = computeGrades(points);
results(attended, points, grades);

}
}

// Produces all output about a particular section.
public static void results(int[] attended, int[] po ints, double[] grades) {

System.out.println("Sections attended: " + Arrays.t oString(attended));
System.out.println("Sections scores: " + Arrays.toS tring(points));
System.out.println("Sections grades: " + Arrays.toS tring(grades));
System.out.println();

}

...

Section attendance answer 2
...

// Counts the sections attended by each student for a particular section.
public static int[] countAttended(String line) {

int[] attended = new int[5];
for (int i = 0; i < line.length(); i++) {

char c = line.charAt(i);
// c == '1' or c == '0'
if (c == '1') {

// student attended their section
attended[i % 5]++;

}

Copyright 2008 by Pearson Education
1010

}
}
return attended;

}

// Computes the points earned for each student for a particular section.
public static int[] computePoints(int[] attended) {

int[] points = new int[5];
for (int i = 0; i < attended.length; i++) {

points[i] = Math.min(20, 3 * attended[i]);
}
return points;

}

// Computes the percentage for each student for a p articular section.
public static double[] computeGrades(int[] points) {

double[] grades = new double[5];
for (int i = 0; i < points.length; i++) {

grades[i] = 100.0 * points[i] / 20.0;
}
return grades;

}
}

File input/output

reading: 6.4 - 6.5

Copyright 2008 by Pearson Education

reading: 6.4 - 6.5

11

Prompting for a file name

� We can ask the user to tell us the file to read.

� The file name might have spaces: use nextLine()

// prompt for the file name
Scanner console = new Scanner(System.in);

Copyright 2008 by Pearson Education
1212

System.out.print("Type a file name to use: ");

String filename = console.nextLine();

Scanner input = new Scanner(new File(filename));

� What if the user types a file name that does not exist?

Fixing file-not-found issues

� File objects have an exists method we can use:

Scanner console = new Scanner(System.in);
System.out.print("Type a file name to use: ");
String filename = console.nextLine();
File file = new File(filename);

while (! file.exists ()) {

Copyright 2008 by Pearson Education
1313

while (! file.exists ()) {
System.out.print("File not found! Try again: ");
String filename = console.nextLine();
file = new File(filename);

}
Scanner input = new Scanner(file); // open the fil e

Output:

Type a file name to use: hourz.text
File not found! Try again: h0urz.txt
File not found! Try again: hours.txt

Output to files

� PrintStream : An object in the java.io package that lets

you print output to a destination such as a file.

� System.out is also a PrintStream .

� Any methods you have used on System.out
(such as print , println) will work on every PrintStream .

Copyright 2008 by Pearson Education
1414

(such as print , println) will work on every PrintStream .

� Do not open a file for reading (Scanner) and writing

(PrintStream) at the same time.

� You could overwrite your input file by accident!

� The result can be an empty file (size 0 bytes).

Printing to files, example

� Printing into an output file, general syntax:

PrintStream <name> =

new PrintStream(new File(" <file name>"));

...

If the given file does not exist, it is created.

Copyright 2008 by Pearson Education
1515

� If the given file does not exist, it is created.

� If the given file already exists, it is overwritten.

PrintStream output = new PrintStream(new File("output.txt"));

output.println("Hello, file!");

output.println("This is a second line of output.");

� Can use similar ideas about prompting for file names here.

PrintStream question

� Modify our previous Sections program to use a

PrintStream to output to the file section_output.txt .

Section #1:
Sections attended: [9, 6, 7, 4, 3]
Student scores: [20, 18, 20, 12, 9]
Student grades: [100.0, 90.0, 100.0, 60.0, 45.0]

Copyright 2008 by Pearson Education
1616

Student grades: [100.0, 90.0, 100.0, 60.0, 45.0]

Section #2:
Sections attended: [6, 7, 5, 6, 4]
Student scores: [18, 20, 15, 18, 12]
Student grades: [90.0, 100.0, 75.0, 90.0, 60.0]

Section #3:
Sections attended: [5, 6, 5, 7, 6]
Student scores: [15, 18, 15, 20, 18]
Student grades: [75.0, 90.0, 75.0, 100.0, 90.0]

PrintStream answer
// Section attendance
// This version uses a PrintStream for output.

import java.io.*;
import java.util.*;

public class Sections {
public static void main(String[] args) throws FileN otFoundException {

Scanner input = new Scanner(new File("sections.txt"));
PrintStream out = new PrintStream(new File("section_ output.txt"));
while (input.hasNextLine ()) { // process one section

Copyright 2008 by Pearson Education
1717

while (input.hasNextLine ()) { // process one section
String line = input.nextLine();
int[] attended = countAttended(line);
int[] points = computePoints(attended);
double[] grades = computeGrades(points);
results(attended, points, grades , out);

}
}

// Produces all output about a particular section.
public static void results(int[] attended, int[] po ints,

double[] grades , PrintStream out) {
out.println ("Sections attended: " + Arrays.toString(attended)) ;
out.println ("Sections scores: " + Arrays.toString(points));
out.println ("Sections grades: " + Arrays.toString(grades));
out.println ();

}
...

