
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 8: Classes

Lecture 8-1: Intro to Classes and Objects

reading: 8.1 - 8.3

Copyright 2008 by Pearson Education
2

Lecture outline

� objects, classes, object-oriented programming

� classes as modules (multi-class programs)

� classes as types

� relationship between classes and objects

� abstraction

� anatomy of a class

� fields

� instance methods

Copyright 2008 by Pearson Education

Multi-class Programs
(classes as modules)

Copyright 2008 by Pearson Education
4

Multi-class systems

� Most large software systems consist of many classes.

� One main class runs and calls methods of the others.

� Advantages:

� code reuse

� splits up the program logic into manageable chunks

Main Class #1

main

method1

method2

Class #2

method3

method5

Class #3

method4

method6

Copyright 2008 by Pearson Education
5

Redundant programs 1

� Consider the following program:
// This program sees whether some interesting numbe rs are prime.
public class Primes1 {

public static void main(String[] args) {
int[] nums = {1234517, 859501, 53, 142};
for (int i = 0; i < nums.length; i++) {

if (isPrime(nums[i])) {
System.out.println(nums[i] + " is prime");

}
}

}

// Returns the number of factors of the given integ er.
public static int countFactors(int number) {

int count = 0;
for (int i = 1; i <= number; i++) {

if (number % i == 0) {
count++; // i is a factor of the number

}
}
return count;

}

// Returns true if the given number is prime.
public static boolean isPrime(int number) {

return countFactors(number) == 2;
}

}

Copyright 2008 by Pearson Education
6

Redundant programs 2

� The following program is very similar to the first one:
// This program prints all prime numbers up to a ma ximum.
public class Primes2 {

public static void main(String[] args) {
Scanner console = new Scanner(System.in);
System.out.print("Max number? ");
int max = console.nextInt();
for (int i = 2; i <= max; i++) {

if (isPrime(i)) {
System.out.print(i + " ");

} }
System.out.println();

}

// Returns the number of factors of the given integ er.
public static int countFactors(int number) {

int count = 0;
for (int i = 1; i <= number; i++) {

if (number % i == 0) {
count++; // i is a factor of the number

} }
return count;

}

// Returns true if the given number is prime.
public static boolean isPrime(int number) {

return countFactors(number) == 2;
}

}

Copyright 2008 by Pearson Education
7

Classes as modules

� module: A reusable piece of software.

� A class can serve as a module by containing common code.

� Example module classes: Math , Arrays , System

// This class is a module that contains useful meth ods
// related to factors and prime numbers.
public class Factors {

// Returns the number of factors of the given integ er.
// Assumes that a non-negative number is passed.
public static int countFactors(int number) {

int count = 0;
for (int i = 1; i <= number; i++) {

if (number % i == 0) {
count++; // i is a factor of the number

}
}

return count;
}

// Returns true if the given number is prime.
public static boolean isPrime(int number) {

return countFactors(number) == 2;
}

}

Copyright 2008 by Pearson Education
8

More about modules

� A module is a partial program, not a complete program.

� Modules do not have a main . You don't run them directly.

� Modules are meant to be utilized by other classes.

� Other classes are clients (users) of the module.

� Syntax for calling a module's static method:

<class name> . <method name> (<parameters>)

� Example:

int factorsOf24 = Factors.countFactors(24) ;

Copyright 2008 by Pearson Education
9

Using a module

� The redundant programs can now use the module:
// This program sees whether some interesting numbe rs are prime.
public class Primes {

public static void main(String[] args) {
int[] nums = {1234517, 859501, 53, 142};
for (int i = 0; i < nums.length; i++) {

if (Factors.isPrime(nums[i])) {
System.out.println(nums[i] + " is prime");

}
}

}
}

// This program prints all prime numbers up to a gi ven maximum.
public class Primes2 {

public static void main(String[] args) {
Scanner console = new Scanner(System.in);
System.out.print("Max number? ");
int max = console.nextInt();
for (int i = 2; i <= max; i++) {

if (Factors.isPrime(i)) {
System.out.print(i + " ");

} }
System.out.println();

}
}

Copyright 2008 by Pearson Education

Object-Oriented
Programming Concepts

reading: 8.1

self-check: #1-4

Copyright 2008 by Pearson Education
11

Using objects

� Many large programs benefit from using objects.
� Example: Circles uses DrawingPanel and Graphics objects.

� Example: PersonalityTest uses Scanner , PrintStream .

� What if our program would benefit from using a type of
objects that doesn't yet exist in Java?

Circles.java (client program)

main(String[] args) {
DrawingPanel p1 =

new DrawingPanel(...);
DrawingPanel p2 =

new DrawingPanel(...);
...

}

DrawingPanel.java (class)

public class DrawingPanel {
...

}

Copyright 2008 by Pearson Education
12

Objects, classes, types

� class: A program entity that represents either:

1. A program / module, or

2. A template for a new type of objects.

� classes of objects we've used so far:

String , Scanner , DrawingPanel , Graphics , Color , Random,
File , PrintStream

� We can write classes that define new types of objects.

� object: An entity that combines state and behavior.

� object-oriented programming (OOP): Programs that

perform their behavior as interactions between objects.

Copyright 2008 by Pearson Education
13

Blueprint analogy
Music player blueprint

state:
current song
volume
battery life

behavior:
power on/off
change station/song
change volume
choose random song

Music player #1

state:
song = "Thriller"
volume = 17
battery life = 2.5 hrs

behavior:
power on/off
change station/song
change volume
choose random song

Music player #2

state:
song = "Lovesong"
volume = 9
battery life = 3.41 hrs

behavior:
power on/off
change station/song
change volume
choose random song

Music player #3

state:
song = "Closer"
volume = 24
battery life = 1.8 hrs

behavior:
power on/off
change station/song
change volume
choose random song

creates

Copyright 2008 by Pearson Education
14

Abstraction

� abstraction: A distancing between ideas and details.

� We can use objects without knowing how they work.

� You use abstraction every day. Example: Your iPod.

� You understand its external behavior (buttons, screen).

� You don't understand its inner details, and you don't need to.

Copyright 2008 by Pearson Education
15

Point objects

Point p1 = new Point(5, -2);
Point p2 = new Point();

� State (data) of each Point object:

� Behavior (methods) of each Point object:

how far away the point is from point pdistance(p)

adjusts the point's x and y by the given amountstranslate(dx, dy)

sets the point's x and y to the given valuessetLocation(x, y)

DescriptionMethod name

the point's y-coordinatey

the point's x-coordinatex

DescriptionField name

Copyright 2008 by Pearson Education
16

A Point class

� The class (blueprint) knows how to create objects.
� Each object contains its own data and methods.

Point class

state:
int x, y

behavior:
distance(Point p)
equals(Point p)
setLocation(int x, int y)
toString()
translate(int dx, int dy)

Point object #1

state:
x = 5, y = -2

behavior:
distance(Point p)
equals(Point p)
setLocation(int x, int y)
toString()
translate(int dx, int dy)

Point object #2

state:
x = -245, y = 1897

behavior:
distance(Point p)
equals(Point p)
setLocation(int x, int y)
toString()
translate(int dx, int dy)

Point object #3

state:
x = 18, y = 42

behavior:
distance(Point p)
equals(Point p)
setLocation(int x, int y)
toString()
translate(int dx, int dy)

Copyright 2008 by Pearson Education
17

Our task

� In the following slides, we will re-implement

Java's Point class as a way of learning about classes.

� We will define our own new type of objects named Point .

� Each Point object will contain x/y data called fields.

� Each Point object will contain behavior called methods.

� Programs called client programs will use the Point objects.

� After we understand Point , we will also implement other
new types of objects such as Date .

18
Copyright 2008 by Pearson Education

Object State:
Fields

reading: 8.2

self-check: #5-6

Copyright 2008 by Pearson Education
19

Point class, version 1

public class Point {
int x;

int y;

}

� Save this code into a file named Point.java .

� The above code creates a new class named Point .

� Each Point object contains two pieces of data:

� an int named x, and

� an int named y.

� Point objects do not contain any behavior (yet).

Copyright 2008 by Pearson Education
20

Fields

� field: A variable inside an object that is part of its state.

� Each object has its own copy of each field.

� Declaring a field, syntax:

<type> <name> ;

� Example:

public class Student {

String name; // each Student object has a

double gpa; // name and gpa data field

}

Copyright 2008 by Pearson Education
21

Accessing fields

� Other classes can access/modify the object's fields.

� access: <variable> . <field name>

� modify: <variable> . <field name> = <value> ;

� Example (code in PointMain.java):

Point p1 = new Point();
Point p2 = new Point();
...
System.out.println("the x-coord is " + p1.x); // access
p2.y = 13; // modify

Copyright 2008 by Pearson Education
22

Recall: Client code

� Point.java is not, by itself, a runnable program.

� Classes are modules that can be used by other programs.

� client code: Code that uses a class and its objects.

� The client code is a runnable program with a main method.

PointMain.java (client code)

main(String[] args) {
Point p1 = new Point();
p1.x = 7;
p1.y = 2;

Point p2 = new Point();
p2.x = 4;
p2.y = 3;
...

}

Point.java (class of objects)

public class Point {
int x;
int y;

}

2y7x

3y4x

Copyright 2008 by Pearson Education
23

Point client code
� The client code below (PointMain.java) uses our Point class.

public class PointMain {
public static void main(String[] args) {

// create two Point objects
Point p1 = new Point();
p1.y = 2;
Point p2 = new Point();
p2.x = 4;

System.out.println("p1: (" + p1.x + ", " + p1.y + ")");

// move p2 and then print it
p2.x += 2;
p2.y ++;
System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

}
}

OUTPUT:
p1: (0, 2)
p2: (6, 1)

Copyright 2008 by Pearson Education
24

More client code
public class PointMain2 {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point();
p1.x = 7;
p1.y = 2;
Point p2 = new Point();
p2.x = 4;
p2.y = 3;

System.out.println("p1: (" + p1.x + ", " + p1.y + ")");
System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

// compute/print each point's distance from the ori gin
double dist1 = Math.sqrt(p1.x * p1.x + p1.y * p1.y) ;
double dist2 = Math.sqrt(p2.x * p2.x + p2.y * p2.y) ;
System.out.println("p1's distance from origin: " + dist1);
System.out.println("p2's distance from origin: " + dist2);

// move p1 and p2 and print them again
p1.x += 11;
p1.y += 6;
p2.x += 1;
p2.y += 7;
System.out.println("p1: (" + p1.x + ", " + p1.y + ")");
System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

// compute/print distance from p1 to p2
int dx = p1.x - p2.x;
int dy = p2.y - p2.y;
double distp1p2 = Math.sqrt(dx * dx + dy * dy);
System.out.println("distance from p1 to p2: " + dist p1p2);

}
}

25
Copyright 2008 by Pearson Education

Object Behavior:
Methods

reading: 8.3

self-check: #7-9

exercises: #1-4

Copyright 2008 by Pearson Education
26

Client code redundancy

� Our client program translated a Point object's location:

// move p2 and print it again
p2.x += 2;
p2.y += 4;
System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

� To translate several points, the code must be repeated:

p1.x += 11;
p1.y += 6;

p2.x += 2;
p2.y += 4;

p3.x += 1;
p3.y += 7;
...

Copyright 2008 by Pearson Education
27

Eliminating redundancy, v1

� We can eliminate the redundancy with a static method:

// Shifts the location of the given point.
public static void translate(Point p, int dx, int dy) {

p.x += dx;
p.y += dy;

}

� main would call the method as follows:

// move p2 and then print it again
translate(p2, 2, 4);
System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

� (Why doesn't translate need to return the modified point?)

Copyright 2008 by Pearson Education
28

Problems with static solution

� The syntax doesn't match how we're used to using objects.

translate(p2, 2, 4); // ours (bad)

� If we wrote several client programs that translated Point s,

each would need a copy of the translate method.

� The point of classes is to combine state and behavior.

� translate behavior is closely related to a Point 's data.

� The method belongs inside each Point object.

p2.translate(2, 4); // Java's (better)

Copyright 2008 by Pearson Education
29

Instance methods

� instance method: Defines behavior for each object.

public <type> <name> (<parameter(s)>) {

<statement(s)> ;

}

� (same as static methods, but without the static keyword)

� Instance methods allow clients to access an object's state.

� accessor: A method that lets clients examine object state.

� mutator: A method that modifies an object's state.

Copyright 2008 by Pearson Education
30

Instance method example
public class Point {

int x;
int y;

// Changes the location of this Point object.
public void translate(int dx, int dy) {

...
}

}

� The translate method no longer has a Point p parameter.

� How does the method know which point to move?

Copyright 2008 by Pearson Education
31

� Each Point object has its own copy of the translate method,

which operates on that object's state:

Point p1 = new Point();
p1.x = 7;
p1.y = 2;

Point p2 = new Point();
p2.x = 4;
p2.y = 3;

p1.translate(11, 6);
p2.translate(1, 7);

public void translate(int dx, int dy) {
// this code can see p1's x and y

}

Point object diagrams

2y7x

p1

p2
3y4x

public void translate(int dx, int dy) {
// this code can see p2's x and y

}

Copyright 2008 by Pearson Education
32

The implicit parameter

� implicit parameter:

The object on which an instance method is called.

� During the call p1.translate(11, 6); ,

the object referred to by p1 is the implicit parameter.

� During the call p2.translate(1, 7); ,

the object referred to by p2 is the implicit parameter.

� The instance method can refer to that object's fields.

� We say that it executes in the context of a particular object.

� translate can refer to the x and y of the object it was called on.

Copyright 2008 by Pearson Education
33

Point class, version 2

public class Point {
int x;

int y;

// Changes the location of this Point object.

public void translate(int dx, int dy) {

x = x + dx;

y = y + dy;

}

}

� Now each Point object contains a method named translate

that modifies its x and y fields by the given parameter values.

Copyright 2008 by Pearson Education
34

Tracing method calls

p1.translate(11, 6);
p2.translate(1, 7);

public void translate(int dx, int dy) {
x = x + dx;
y = y + dy;

}

8y3x

p1

public void translate(int dx, int dy) {
x = x + dx;
y = y + dy;

}

3y4x

p2

Copyright 2008 by Pearson Education
35

Client code, version 2
public class PointMain2 {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point();
p1.y = 2;
Point p2 = new Point();
p2.x = 4;

System.out.println("p1: (" + p1.x + ", " + p1.y + ")");

// move p2 and then print it
p2.translate(2, 1);
System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

}
}

OUTPUT:
p1 is (0, 2)
p2 is (6, 1)

Copyright 2008 by Pearson Education
36

Instance method questions

� Write a method distanceFromOrigin that returns the
distance between a Point and the origin, (0, 0).

Use the following formula:

� Write a method distance that computes the distance
between a Point and another Point parameter.

� Write a method setLocation that changes a Point 's

location to the (x, y) values passed.

� You may want to refactor the Point class to use this method.

� Modify the client code to use these methods.

() ()2
12

2
12 yyxx −+−

Copyright 2008 by Pearson Education
37

Client code question

� Recall our client program that produces this output:

p1: (7, 2)
p1's distance from origin: 7.280109889280518
p2: (4, 3)
p2's distance from origin: 5.0
p1: (18, 8)
p2: (5, 10)

� Modify this program to use our new methods.

Copyright 2008 by Pearson Education
38

Client code answer
// This client program uses the Point class.
public class PointMain {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point();
p1.setLocation(7, 2);
Point p2 = new Point();
p2.setLocation(4, 3);

// print each point
System.out.println("p1: (" + p1.x + ", " + p1.y + ")");
System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

// compute/print each point's distance from the ori gin
System.out.println("p1's distance from origin: " + p1.distanceFromOrigin());
System.out.println("p2's distance from origin: " + p1.distanceFromOrigin());

// move p1 and p2 and print them again
p1.translate(11, 6);
p2.translate(1, 7);
System.out.println("p1: (" + p1.x + ", " + p1.y + ")");
System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

// compute/print distance from p1 to p2
System.out.println("distance from p1 to p2: " + p1.distance(p2));

}
}

