Building Java Programs

Chapter 8: Classes
Lecture 8-1: Intro to Classes and Objects

reading: 8.1 - 8.3

gl

~_ Copyright 2008 by Pearson Education

e By D —

~ Lecture outline

* objects, classes, object-oriented programming
» classes as modules (multi-class programs)
» classes as types
» relationship between classes and objects
» abstraction

e anatomy of a class
o fields
e instance methods

- =

Copyright 2008 by Pearson Education

Multi-class Programs
(classes as modules)

|

lass

-

e Most large software systems consist of many classes.
e One main class runs and calls methods of the others.

systems

e Advantages:
e code reuse
» splits up the program logic into manageable chunks

- -

Main Class #1

main

methodl

method?2

= - -
Class #2 Class #3

method3 method4
method5 method6

Copyright 2008 by Pearson Education

Redundant programs 1

e Consider the following program:

/I This program sees whether some interesting numbe rs are prime.
public class Primes1 {
public static void main(String[] args) {
int[] nums = {1234517, 859501, 53, 142}
for (inti = 0; i < nums.length; i++) {
if (|sPr|me(nums[|])) {
System.out.printin(numsJi] + " is prime");

}
}
}
/I Returns the number of factors of the given integ er.
public static int countFactors(int number) {
int count = O;
for (inti=1;i <= number; i++) {
if (number % i == 0) {
} count++; /Il i is a factor of the number
} return count;

I/l Returns true if the given number is prime.

public static boolean isPrime(int number) {
return countFactors(number) =

}

)

- =

Copyright 2008 by Pearson Education

—

- =

/I This program prints all prime numbers up to a ma
public class Primes2 {

public static void main(String[] args) {
Scanner console = new Scanner(System.in);
System.out.print("Max number? ");
int max = console.nextint();
for (inti=2;i<=max; i++) {
if (isPrime(i)) {
o System.out.print(i +"");

\ System.out.printin();

/I Returns the number of factors of the given integ
public static int countFactors(int number) {

int count = 0;
for (inti=1;i <= number; i++) {
if (number % i == 0) {
= count++; /l1is a factor of the number

return count;

I/l Returns true if the given number is prime.

public static boolean isPrime(int number) {
return countFactors(number) == 2;

}

Copyright 2008 by Pearson Education

Reundant programs 2

e The following program is very similar to the first one:

ximum.

el

- =

"Classes as modules

e

module: A reusable piece of software.
» A class can serve as a module by containing common code.
» Example module classes: Math, Arrays , System

/[This class is a module that contains useful meth ods
// related to factors and prime numbers.

public class Factors { _ _
/[Returns the number of factors of the given mteg er.

/[Assumes that a non-negative number is passed.
public static int countFactors(int number) F

int count = 0; :
for (inti=1; 1 <= number; i++) {
if (number % i ==)} A2
count++; / i is a factor of the number
}

return count;

I/l Returns true if the given number is prime.
public static boolean isPrime(int number) {

return countFactors(number) == 2;

}

Copyright 2008 by Pearson Education

" More about modules

* A module is a partial program, not a complete program.
 Modules do not have a main. You don't run them directly.

* Modules are meant to be utilized by other classes.
o Other classes are clients (users) of the module.

» Syntax for calling a module's static method:

<class name> . <method name> (<parameters>)

» Example:
Int factorsOf24 = Factors.countFactors(24) .

- -

Copyright 2008 by Pearson Education

Using a module

e The redundant programs can now use the module:

/I This program sees whether some interesting numbe rs are prime.
public class Primes {
public static void main(String[] args) {
int[] nums = {1234517, 859501, 53, 142},
for (inti=0; i < nums.length; i++) {
if (Factors.isPrime(numsJi])
} System.out.printin(numsJi] + " is prime");

}

/I This program prints all prime numbers up to a gi ven maximum.
public class Primes2 {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);

System.out.print("Max number? ");

int max = console.nextint();

for (inti=2;i<=max; i++) {

if (Factors.isPrime(i)) {
System.out.print(i +"");

}
System.out.printin();

- =

Copyright 2008 by Pearson Education

Object-Oriented
Programming Concepts

reading: 8.1

self-check: #1-4

|

Usig objects

e Many large programs benefit from using objects.
» Example: Circles uses DrawingPanel and Graphics objects.
 Example: PersonalityTest uses Scanner , PrintStream

DrawingPanel.java (class)
public class DrawingPanel {

Circles.java (client program) - —
main(String[] args) {
DrawingPanel p1 =

new DrawingPanel(...); ety J
DrawingPanel p2 = \
new DrawingPanel(...); : R
2 () T |88 0O CSE.. OO0 0O CSE..

* What if our program would benefit from using a type of
objects that doesn't yet exist in Java?
flalE

- =

Copyright 2008 by Pearson Education

—

\ __m”,,”“"“ -
T o
e - = —_— _—_—_———-—____________ R ——

" Objects, classes, types

e class: A program entity that represents either:
1. A program / module, or
2. A template for a new type of objects.

» classes of objects we've used so far:

String , Scanner , DrawingPanel , Graphics , Color , Random,
File , PrintStream

« We can write classes that define new types of objects.

* object: An entity that combines state and behavior.

» object-oriented programming (OOP): Programs that
perform their behavior as interactions between objects.

12

— Copyright 2008 by Pearson Education

Bl print analogy

Music player blueprint

state:
current song
volume
battery life

behavior:
power on/off
change station/song
change volume
choose random song

creates

Music player #1

state:
song = "Thriller"
volume = 17
battery life = 2.5 hrs

power on/off
change station/song
change volume
choose random song

Music player #2

state:
song = "Lovesong"
volume = 9
battery life = 3.41 hrs

power on/off
change station/song
change volume
choose random song

— Copyright 2008 by Pearson Education

Music player #3

state:

~song = "Closer"
volume = 24
battery life = 1.8 hrs

power on/off
change station/song
change volume
choose random song

13

el ' By o —

Abtra ction

* abstraction: A distancing between ideas and details.
« We can use objects without knowing how they work.

* You use abstraction every day. Example: Your iPod.
* You understand its external behavior (buttons, screen).
» You don't understand its inner details, and you don't need to.

14
T3 -
- i ke
- Y30
r‘-‘é- x ¥
: L4
SRRt G »
o L e qn 4% 3 aNma4
“%‘é o> \ 10 AMP
D o et 1
:I%"- % S / ™)
i 5 S5 8]] - —
‘ - Resistor Voltage

\ Here Here

14

- =

Copyright 2008 by Pearson Education

AT

Point p1 = new Point(5, -2);
Point p2 = new Point();

e State (data) of each Point object:

Field name Description
X the point's x-coordinate
y the point's y-coordinate

* Behavior (methods) of each Point object:
Method name Description

distance(p) how far away the point is from point p

setLocation(X, y) |sets the point's x and y to the given values

translate(dx, dy) |adjusts the point's x and y by the given amounts

e 1
. Copyright 2008 by Pearson Education

" A Point class

* The class (blueprint) knows how to create objects.
e Each object contains its own data and methods.

Point class

state:
int X,y

behavior:
distance(Point p)
equals(Point p)
setLocation(int x, inty)
toString()

translate(int dx, int dy)

-

Point object #1

state:
X=5y=-2

behavior:
distance(Point p)

equals(Point p)
setLocation(int x, inty)
| toString()

translate(int dx, int dy)

Point object #2

state:
X =-245,y = 1897

behavior:
distance(Point p)
equals(Point p)
setLocation(int x, inty)
toString()

translate(int dx, int dy)

Point object #3

state:
Xx=18,y=42

behavior:
distance(Point p)
equals(Point p)
setLocation(int X, inty)
toString()

translate(int dx, int dy)

16

Copyright 2008 by Pearson Education

Our task

In the following slides, we will re-implement
Java's Point class as a way of learning about classes.

We will define our own new type of objects named Point .
Each Point object will contain x/y data called fields.

Each Point object will contain behavior called methods.
 Programs called client programs will use the Point objects.

» After we understand Point , we will also implement other
new types of objects such as Date .

— 17
~ " Copyright 2008 by Pearson Education

Object State:
Fields

reading: 8.2

self-check: #5-6

==
T _ - 18
ad Copyright 2008 by Pearson Education

o TR

public class Point {
Int X;
Inty;

}

e Save this code into a file named Point.java

e The above code creates a new class named Point

» Each Point object contains two pieces of data:
« anint named x, and
« anint namedy.

o Point objects do not contain any behavior (yet).

19
Copyright 2008 by Pearson Education

=

* field: A variable inside an object that is part of its state.
» Each object has its own copy of each field.

e Declaring a field, syntax:

<type> <name>

» Example:

public class Student {
String name; // each Student object has a
double gpa; /[name and gpa data field

20

- =

Copyright 2008 by Pearson Education

S E

" Acessing fields

e Other classes can access/modify the object's fields.

* access: <variable> . <field name>
* modify: <variable> . <field name> = <value> ;

* Example (code in PointMain.java):

Point p1 = new Point();
Point p2 = new Point();

System.out.printin("the x-coord is" + pl.x); /] access
p2.y= 13; [/ modify

21
Copyright 2008 by Pearson Education

" Recall: Clie

— =

nt code

* Point.java is not, by itself, a runnable program.
» Classes are modules that can be used by other programs.

* client code: Code that uses a class and its objects.
» The client code is a runnable program with a main method.

PointMain.java (client code)

main(String[] args) {
Point p1 = new Point();
pl.x =7,
ply=2;

Point p2 = new Point();
p2.X = 4;
p2.y = 3;

-
=

-
-

— Copyright 2008 by Pearson Education

» | Point.java (class of objects)

public class Point {

int Xx;
inty;
}
X / y 2
X 4 Y 3

“Point client code

* The client code below (PointMain.java) uses our Point class.

public class PointMain {
public static void main(String[] args) {
I/ create two Point objects
Point p1 = new Point();

ply =2
Point p2 = new Point();
p2.x =4;
System.out.printin("p1: (" + N D GRE S ply +")");
// move p2 and then print it
p2.x +=2;
p2.y ++;
System.out.printin("p2: (" + p2.x +", "+ p2y +")");
}

}

OUTPUT:

pl: (0, 2)

. p2:(6,1)

23

- =

Copyright 2008 by Pearson Education

—

=

.

More client code

public class PointMain2 {
public static void main(String[] args) {

}

Il create two Point objects

Point p1 = new Point();

pl.x =7,

ply = 2;

Point p2 = new Point();

p2.X = 4;

p2.y = 3;

System.out.printin("pl: "+ pl.x+","+ply+"
System.out.printin("p2: (" +p2.x+"," + p2.y +"

/I compute/print each point's distance from the ori
double distl = Math.sqgrt(pl.x * p1.x + pl.y * pl.y)
double dist2 = Math.sqrt(p2.x * p2.x + p2.y * p2)
System.out. prlntln("pl s distance from ongln
System.out.printin("p2's distance from origin: '

// move pl1 and p2 and print them again

pl.x +=11;

pl.y +=6;

p2.x +=1;

p2.y +=7,;

System.out.printin("pl: (" + pl.x+", "+ ply +"
System.out.printin("p2: (" + p2.x+", " + p2.y +"

/l compute/print distance from pl to p2

intdx = pl.x - p2.x;

intdy = p2.y - p2.y;

double distplp2 = Math.sqrt(dx * dx + dy * dy)
System.out.printin("distance from pl to p2: " + dist

Copyright 2008 by Pearson Education

plp2);

24

Object Behavior:
Methods

reading: 8.3

self-check: #7-9
exercises: #1-4

==
-) : 25
ad Copyright 2008 by Pearson Education

e Qur client program translated a Point object's location:

// move p2 and print it again

p2.x +=2;

p2y +=4;

System.out.printin("p2: (" + PSRk p2.y +")");

e To translate several points, the code must be repeated:

plx +=11;
Lyt 6;

p2.x +=2;
p2y +=4;
p3.x +=1;
p3y +=7,;

- =

Copyright 2008 by Pearson Education

26

e] —

EIiinating redundancy, vl

e We can eliminate the redundancy with a static method:
// Shifts the location of the given point.

public static void translate(Point p, int dx, int dy) {
p.X +=dX;
; p.y +=dy;

e main would call the method as follows:

// move p2 and then print it again
translate(p2, 2, 4);
System.out.printin("p2: (" + p2.x+ ", " + p2.y + ")");

 (Why doesn't translate need to return the modified point?)

27

- =

Copyright 2008 by Pearson Education

- Problems with static solution

* The syntax doesn't match how we're used to using objects.
translate(p2, 2, 4); // ours (bad)

» If we wrote several client programs that translated Point s,
each would need a copy of the translate method.

* The point of classes is to combine state and behavior.
* translate behavior is closely related to a Point 's data.
» The method belongs inside each Point object.

p2.translate(2, 4); // Java's (better)

28

- -

Copyright 2008 by Pearson Education

Instance methods

* instance method: Defines behavior for each object.

public <type> <name> (<parameter(s)>){
<statement(s)> ;

}

» (same as static methods, but without the static keyword)

e Instance methods allow clients to access an object's state.
» accessor: A method that lets clients examine object state.
« mutator: A method that modifies an object's state.

29

_— g

~ Copyright 2008 by Pearson Education

ST —

“Instance method example

public class Point {
Nt X;
Inty;

// Changes the location of this Point object.
public void translate(int dx, int dy) {

}
}

» The translate method no longer has a Pointp parameter.
» How does the method know which point to move?

30

Copyright 2008 by Pearson Education

—

- -

s

e Each Point object has

t diagrams

its own copy of the translate

which operates on that object's state:

Point p1 = new Point();

pl.x =7,
ply=2;
Point p2 = new Point();
pP2.x =4,
p2.y = 3;

pl.translate(11, 6);
p2.translate(1, 7);

pl

method,

X B YR D

public void translate(int dx, int dy) {
// this code can see pl's x and y

}

X[4 Y| 3

p2

Copyright 2008 by Pearson Education

public void translate(int dx, int dy) {
// this code can see p2's x and y

}

31

implicit parameter

o implicit parameter:
The object on which an instance method is called.

e During the call pl.translate(11, 6); :
the object referred to by pl is the implicit parameter.

» During the call p2.translate(1, 7); :
the object referred to by p2 is the implicit parameter.

 The instance method can refer to that object's fields.
« We say that it executes in the context of a particular object.

 translate can refer to the x and y of the object it was called on.

- -

Copyright 2008 by Pearson Education

32

Point class, version 2

public class Point {
Int X;
Inty;

// Changes the location of this Point object.
public void translate(int dx, int dy) {

X =X+ dX;

y =y +dy;

}

» Now each Point object contains a method named translate
that modifies its x and y fields by the given parameter values.

33

- =

Copyright 2008 by Pearson Education

—

=T

pl.translate(11, 6);
p2.translate(1, 7);

" Tring method calls

X| 3 y| 8
public void translate(int dx, int dy) {
p1 X =X+ dx;
y=y+dy,
}
X| 4 Yl 3
public void translate(int dx, int dy) {
p2 X =X+ dx;
y=y+dy;
}

-

Copyright 2008 by Pearson Education

34

I

public class PointMain2 {
public static void main(String[] args) {
// create two Point objects
Point p1 = new Point();
ply=2;
Point p2 = new Point();
p2.X = 4;

System.out.printin("pl: (" + p1l.x+", "+ ply +"

// move p2 and then print it
p2.translate(2, 1);
System.out.printin("p2: (" + p2x+", " + p2.y +"
}
}

OUTPUT:
plis (0, 2)
p2is (6, 1)

- =

—

Copyright 2008 by Pearson Education

)");

)");

g Bt

39

Instance method questions

* Write a method distanceFromOrigin that returns the
distance between a Point and the origin, (0, 0).

Use the following formula: \/(Xz -x ¥ +(y,-y,]

» Write a method distance that computes the distance
between a Point and another Point parameter.

* Write a method setlLocation that changes a Point 's
location to the (X, y) values passed.

* You may want to refactor the Point class to use this method.

. * Modify the client code to use these methods.

—y———_—

~ Copyright 2008 by Pearson Education

o R

e Recall our client program that produces this output:

pl: (7, 2)

pl's distance from origin: 7.280109889280518
p2: (4, 3)

p2's distance from origin: 5.0

pl: (18, 8)

p2: (5, 10)

* Modify this program to use our new methods.

3

-

Copyright 2008 by Pearson Education

IR = - —

" Client code answer

/[This client program uses the Point class.
public class PointMain {
public static void main(String[] args) {
I/ create two Point objects
Point p1 = new Point();
pl.setLocation(7, 2);
Point p2 = new Point();
p2.setLocation(4, 3);

// print each point

System.out.printin("pl: (" + pl.x+", "+ ply +")");
System.out.printin("p2: (" + p2.x+", "+ p2.y +")");
I/ compute/print each point's distance from the ori gin
System.out.printin("p1's distance from origin: " + pl.distanceFromOrigin());
System.out.printin("p2's distance from origin: " + pl.distanceFromOrigin());

// move pl and p2 and print them again
pl.translate(11, 6);

p2.translate(1, 7);

System.out.printin("pl: (" + pl.x+", "+ ply+")
System.out.printin("p2: (" + p2.x +", " + p2.y + " 5%

/I compute/print distance from p1 to p2
System.out.printin("distance from plto p2:" + pl.distance(p2))i

38

Copyright 2008 by Pearson Education

—

