
Week 2Week 2

expressions, variables, for loops

Special thanks to Scott Shawcroft, Ryan Tucker, and Paul Beck for their work on these slides.

Except where otherwise noted, this work is licensed under:
http://creativecommons.org/licenses/by-nc-sa/3.0

Expressions

• Arithmetic is very similar to Java

– Operators: + - * / %

– Precedence: * / % before + -

– Integers vs. real numbers

>>> 1 + 1
2
>>> 1 + 3 * 4 - 2
11
>>> 7 / 2
3
>>> 7.0 / 2
3.5

Variables

• Declaring

– no type is written; same syntax as assignment

• Operators

– no ++ or -- operators (must manually adjust by 1)

Java PythonJava Python

int x = 2;
x++;
System.out.println(x);

x = x * 8;
System.out.println(x);

double d = 3.2;
d = d / 2;
System.out.println(d);

x = 2
x = x + 1
print x

x = x * 8
print x

d = 3.2
d = d / 2
print d

Types

• Python is looser about types than Java

– Variables' types do not need to be declared

– Variables can change types as a program is running

Value Java type Python type

42 int int

3.14 double float

"ni!" String str

String Concatenation

• Integers and strings cannot be concatenated in Python.

– Workarounds:

str(value) - converts a value into a string

print expression, - prints but does not go to next line

>>> x = 4>>> x = 4
>>> print "Thou shalt not count to " + x + "."
TypeError: cannot concatenate 'str' and 'int' objects

>>> print "Thou shalt not count to " + str(x) + "."
Thou shalt not count to 4.

>>> print x + 1, "is out of the question."
5 is out of the question.

String Multiplication

• Python strings can be multiplied by an integer.

– The result is many copies of the string concatenated together.

>>> "hello" * 3
"hellohellohello"

>>> print 10 * "yo "
yo yo yo yo yo yo yo yo yo yo

>>> print 2 * 3 * "4"
444444

The for Loop

for name in range(max):
statements

– Repeats for values 0 (inclusive) to max (exclusive)

>>> for i in range(5):
... print i... print i
0
1
2
3
4

for Loop Variations

for name in range(min, max):
statements

for name in range(min, max, step):
statements

– Can specify a minimum other than 0, and a step other than 1

>>> for i in range(2, 6):
... print i
2
3
4
5
>>> for i in range(15, 0, -5):
... print i
15
10
5

Nested Loops

• Nested loops are often replaced by string * and +

....1

...2

..3

.4

Java

1
2
3
4
5

for (int line = 1; line <= 5; line++) {
for (int j = 1; j <= (5 - line); j++) {

System.out.print(".");
}.4

5

4
5
6

}
System.out.println(line);

}

Python

1
2

for line in range(1, 6):
print (5 - line) * "." + str(line)

Constants

• Python doesn't really have constants.

– Instead, declare a variable at the top of your code.

– All methods will be able to use this "constant" value.

constant.py

1 MAX_VALUE = 31
2
3
4
5
6
7
8
9

10
11
12
13

MAX_VALUE = 3

def printTop():
for i in range(MAX_VALUE):

for j in range(i):
print j

print

def printBottom():
for i in range(MAX_VALUE, 0, -1):

for j in range(i, 0, -1):
print MAX_VALUE

print

Exercise

• Rewrite the Mirror lecture program in Python. Its output:

#================#
| <><> |
| <>....<> |
| <>........<> |
|<>............<>||<>............<>|
|<>............<>|
| <>........<> |
| <>....<> |
| <><> |
#================#

– Make the mirror resizable by using a "constant."

Exercise Solution
SIZE = 4

def bar():
print "#" + 4 * SIZE * "=" + "#"

def top():
for line in range(1, SIZE + 1):

split a long line by ending it with \
print "|" + (-2 * line + 2 * SIZE) * " " + \

"<>" + (4 * line - 4) * "." + "<>" + \
(-2 * line + 2 * SIZE) * " " + "|"(-2 * line + 2 * SIZE) * " " + "|"

def bottom():
for line in range(SIZE, 0, -1):

print "|" + (-2 * line + 2 * SIZE) * " " + \
"<>" + (4 * line - 4) * "." + "<>" + \
(-2 * line + 2 * SIZE) * " " + "|"

main
bar()
top()
bottom()
bar()

Concatenating Ranges

• Ranges can be concatenated with +

– Can be used to loop over a disjoint range of numbers

>>> range(1, 5) + range(10, 15)
[1, 2, 3, 4, 10, 11, 12, 13, 14]

>>> for i in range(4) + range(10, 7, -1):>>> for i in range(4) + range(10, 7, -1):
... print i
0
1
2
3
10
9
8

Exercise Solution 2
SIZE = 4

def bar():
print "#" + 4 * SIZE * "=" + "#"

def mirror ():
for line in range(1, SIZE + 1) + range(SIZE, 0, -1) :

print "|" + (-2 * line + 2 * SIZE) * " " + \
"<>" + (4 * line - 4) * "." + "<>" + \
(-2 * line + 2 * SIZE) * " " + "|"

main
bar()
mirror()
bar()

