
Week 2Week 2

< Moo? >

\ ^__^
\ (oo)_______

(__)\)\/\
||----w |
|| ||

>>> Last Time

* print
* escape sequences
* functions

>>> print "a string"
a string
>>> print 'a string'
a stringa string
>>> print "A word", "and another "
A word and another
>>> print "Hello," + "world!"
Hello, world!

A whaa?

function – a subroutine independent of other
code.

method – a subroutine associated with a class
(think public class...) or object.

>>> Overview

* types
* variables
* for loops* for loops
* 1337 ASCII art

< Whoa... >

\ ^__^
\ (**)_______

(__)\)\/\
U ||----w |

|| ||

int
float

>>> Types

Python cares very little about types. In Java, one
must declare a variable with a particular type and
maintain that type throughout the existence of that
variable. In other words, ints can be only stored

int
double

Java python
178
175.0 float

str
str
bool

variable. In other words, ints can be only stored
in places designated for ints, same for doubles
etc.

This is not the case in Python. Python does not
care about types until the very last moment. This
last moment is when values are used in certain
ways, such as concatenation of strings.

double
String
char
boolean

175.0
“wow”
'w'
True

>>> String concatenation

Like Java, we can concatenate strings using a “+”.
Unlike Java, when a number has to be
concatenated with a string in python, you need to
explicitly perform the conversion to a string using explicitly perform the conversion to a string using
the str() function because it hasn’t made sure that
the types match before run time.

>>> "Suppose " + 2 + " swallows carry it together."
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: cannot concatenate 'str' and 'int' objects
>>> "Suppose " + str(2) + " swallows carry it together."
'Suppose 2 swallows carry it together.''Suppose 2 swallows carry it together.'

>>> Python expressions

Python is very similar to Java in the way that it handles
expressions such as:

� + - * / %� + - * / %
� Integer division – rounds down to nearest int
� Precedence – same rules
� Mixing types – numbers change to keep precision
� Real numbers are kept as “floats” or floating point numbers

>>> Differences in expressions

There are a few things that differ between Python
and Java, such as:

You can multiply strings in python! >>> "Hello!"*3You can multiply strings in python!

There are no increment operators in python (++, --)
so we have to use -= and +=

>>> "Hello!"*3
'Hello!Hello!Hello!'
>>> x = 1
>>> x += 1
>>> print x
2

>>> Variables
As we said earlier, Python cares less about
types. When we create a variable in Python,
the type of the variable doesn’t matter. As a
result, in Python, creating a variable has the
same syntax as setting a value to a variable.

expressions.py

...
int x = 2;
x++;
System.out.println(x);
x = x * 8;
System.out.println(x);

same syntax as setting a value to a variable.

Variables.java

x = 2
x += 1
print x
x = x * 8
print x

d = 3.0
d /= 2
print d

1
2
3
4
5
6
7

1
2
3
4
5
6
7
8
9
10

double d = 3.0;
d /= 2;
System.out.println(d);

s = "wow"
print s

7
8
9
10
11

10
11
12
13
14
15
16

>>> Constants

Continuing Python's free spirited ways, it has
much less restrictions than Java. Because
of this, constants are possible but not in a
commonly used manner. Instead, we'll

SIZE = 2
x = 10 * SIZE

constants.py
1
2commonly used manner. Instead, we'll

designate constants in Python solely by the
variable capitalization. We do need to write
the constants at the top of our program so
that every function can see them!

x = 10 * SIZE
print x

main
…

2
3
4
5
6

>>> Python's For

Unlike Java's for loop, Python's for
loop loops over elements in a
sequence. To loop over a certain
sequence of integers use the range()

1
2
3
4
5
6
7

for i in range(4): # (end)
print i

for i in range(1,4): # (start,end)
print i

for i in range(2,8,2): # (start,end,step_size)

for.py

sequence of integers use the range()
function. Later we will learn objects
that we can use a for loop to go
through all of the elements.

7
8
9
10
11
12

for i in range(2,8,2): # (start,end,step_size)
print i

for <name> in range([<min>,] <max> [,<step>]):
<statements>

>>> Complex Printing

Sometimes more complex output is needed.
To produce output but not go to the next line, just write a comma after the last quotes.
This adds whitespace, so sometimes you need “sys.stdout.write()” which just writes

System.out.print("Hello world! ")
System.out.print("This will all be")
System.out.println(" on the same line.")

This adds whitespace, so sometimes you need “sys.stdout.write()” which just writes
what is in the quotes. You also have to import “sys”!

Hello.java
1
2
3
4

hello2.py
import sys

sys.stdout.write("Hello world! ")
print "This will all be",
print " on the same line."

1
2
3
4
5

>>> Nested loops

In Python, a lot of the time we can do
nested loops in a much more
straightforward way using string
multiplication.

5

44

333

2222
multiplication.

for (int i = 1; i <= 5; i++) {
for (int j = 1; j <= (5 - i); j++) {

System.out.print(" ");
}
for (int k = 1; k <= i; k++) {

System.out.print(i);

Nested.java

1
2
3
4
5
6

for i in range(5,0,-1):
print " " * (i-1) + str(i)*(6-i)

nested1.py

1
2
3

2222

11111

System.out.print(i);
}
System.out.println();
}

6
7
8
9 import sys

for i in range(5,0,-1):
sys.stdout.write(" " * (i-1))
sys.stdout.write(str(i)*(6-i))
print

nested2.py
1
2
3
4
5

>>> Mirror

#================#
| <><> |

scott @ yossarian ~ $ python mirror.py

// Marty Stepp, CSE 142, Autumn 2007
// This program prints an ASCII text figure that
// looks like a mirror.
// This version uses a class constant to make the figure resizable.
public class Mirror2 {

public static final int SIZE = 4; // constant to change the figure size

public static void main(String[] args) {
line();
topHalf();
bottomHalf();
line();

}| <><> |
| <>....<> |
| <>........<> |
|<>............<>|
|<>............<>|
| <>........<> |
| <>....<> |
| <><> |
#================#

}

// Prints the top half of the rounded mirror.
public static void topHalf() {

for (int line = 1; line <= SIZE; line++) {
// pipe
System.out.print("|");

// spaces
for (int j = 1; j <= -2 * line + (2 * SIZE); j++) {

System.out.print(" ");
}

// <>
System.out.print("<>");

// dots .
for (int j = 1; j <= 4 * line - 4; j++) {

System.out.print(".");
}

// <>
System.out.print("<>");

// spaces
for (int j = 1; j <= -2 * line + (2 * SIZE); j++) {

System.out.print(" ");
}

// pipe
System.out.println("|");System.out.println("|");

}
}

// Prints the bottom half of the rounded mirror.
public static void bottomHalf() {

for (int line = SIZE; line >= 1; line--) {
// pipe
System.out.print("|");

// spaces
for (int j = 1; j <= -2 * line + (2 * SIZE); j++) {

System.out.print(" ");
}

// <>
System.out.print("<>");

// dots .
for (int j = 1; j <= 4 * line - 4; j++) {

System.out.print(".");
}

// <>
System.out.print("<>");

// spaces
for (int j = 1; j <= -2 * line + (2 * SIZE); j++) {

System.out.print(" ");
}

Except where otherwise noted, this work is licensed under

© 2007 Scott Shawcroft, Some Rights Reserved

Except where otherwise noted, this work is licensed under
http://creativecommons.org/licenses/by-nc-sa/3.0

Python® and the Python logo are either a registered trademark or trademark of the Python
Software Foundation. Java™ is a trademark or registered trademark of Sun Microsystems, Inc.

in the United States and other countries.

