
1 of 11

CSE 142, Autumn 2009
Final Exam

Wednesday, December 16, 2009

Name: ___

Section: ___________________ TA: ___________________

Student ID #: ___________________

Rules:
• You have 110 minutes to complete this exam.

You may receive a deduction if you keep working after the instructor calls for papers.
• This test is open-book/notes.
• You may not use any computing devices of any kind including calculators.
• Unless otherwise indicated, your code will be graded on proper behavior/output, not on style.
• You do not need to write any import statements in your code.
• Please do not abbreviate code, such as writing ditto marks ("") or dot-dot-dot marks (...). The only

abbreviations allowed are S.o.p, S.o.pln, and S.o.pf for System.out.print, println, and printf.
• If you enter the room, you must turn in an exam and will not be permitted to leave without doing so.
• You must show your Student ID to a TA or instructor for your submitted exam to be accepted.

Good luck!

Problem Description Earned Max
1 Array Mystery 10
2 Reference Mystery 10
3 Inheritance Mystery 10
4 File Processing 15
5 File Processing 10
6 Array Programming 15
7 Array Programming 10
8 Critters 10
9 Classes and Objects 10
X Extra Credit +1

TOTAL Total Points 100

2 of 11

1. Array Mystery
Consider the following method:
public static void arrayMystery(int[] a) {
 for (int i = 1; i < a.length - 1; i++) {
 a[i] = a[i - 1] - a[i] + a[i + 1];
 }
}

Indicate in the right-hand column what values would be stored in the array after the method arrayMystery executes
if the array in the left-hand column is passed as its parameter.

Original Contents of Array Final Contents of Array

int[] a1 = {42, 42};
arrayMystery(a1);

int[] a2 = {6, 2, 4};
arrayMystery(a2);

int[] a3 = {7, 7, 3, 8, 2};
arrayMystery(a3);

int[] a4 = {4, 2, 3, 1, 2, 5};
arrayMystery(a4);

int[] a5 = {6, 0, -1, 3, 5, 0, -3};
arrayMystery(a5);

3 of 11

2. Reference Semantics Mystery
The following program produces 4 lines of output. Write the output below, as it would appear on the console.
import java.util.*; // for Arrays class

public class BasicPoint {
 int x;
 int y;

 public BasicPoint(int x, int y) {
 this.x = x;
 this.y = y;
 }
}

public class ReferenceMystery {
 public static void main(String[] args) {
 int n = 10;
 int[] a = {20}; // an array with just one element
 BasicPoint p = new BasicPoint(30, 40);

 mystery(n, a, p);
 System.out.println(n + " " + Arrays.toString(a) + " " + p.x + "," + p.y);

 a[0]++;
 p.x++;
 mystery(n, a, p);
 System.out.println(n + " " + Arrays.toString(a) + " " + p.x + "," + p.y);
 }

 public static int mystery(int n, int[] a, BasicPoint p) {
 n++;
 a[0]++;
 p.y++;
 System.out.println(n + " " + Arrays.toString(a) + " " + p.x + "," + p.y);
 return n;
 }
}

4 of 11

3. Inheritance Mystery
Assume that the following four classes have been defined:

public class Biggie extends JayZ {
 public void a() {
 System.out.print("Biggie a ");
 super.a();
 }

 public String toString() {
 return "Biggie";
 }
}

public class JayZ extends Tupac {
 public void a() {
 System.out.print("JayZ a ");
 b();
 }
}

public class FiftyCent extends Biggie {
 public void b() {
 System.out.print("FiftyCent b ");
 }
}
public class Tupac {
 public void a() {
 System.out.print("Tupac a ");
 }

 public void b() {
 System.out.print("Tupac b ");
 }

 public String toString() {
 return "Tupac";
 }
}

Given the classes above, what output is produced by the following code?
Tupac[] elements = {new Biggie(), new Tupac(), new JayZ(), new FiftyCent()};
for (int i = 0; i < elements.length; i++) {
 elements[i].a();
 System.out.println();
 elements[i].b();
 System.out.println();
 System.out.println(elements[i]);
 System.out.println();
}

5 of 11

4. File Processing
Write a static method named countCoins that accepts as its parameter a Scanner for an input file whose data
represents a person's money grouped into stacks of coins. Your method should add up the cash values of all the coins
and print the total money at the end. The input consists of a series of pairs of tokens, where each pair begins with an
integer and is followed by the type of coin, which will be either "pennies" (1 cent each), "nickels" (5 cents each),
"dimes" (10 cents each), or "quarters" (25 cents each), case-insensitively. A given coin might appear more than once
on the same line.

For example, if the input file contains the following text:

3 pennies 2 quarters 1 pennies 3 nickels 4 dimes

3 pennies are worth 3 cents, and 2 quarters are worth 50 cents, and 1 penny is worth 1 cent, and 3 nickels are worth 15
cents, and 4 dimes are worth 40 cents. The total of these is 1 dollar and 9 cents, therefore your method would produce
the following output if passed this input data. Notice that it says 09 for 9 cents.

Total money: $1.09

Here is a second example. Suppose the input file contains the following text. Notice the capitalization and spacing:
12 QUARTERS 1 Pennies 33
PeNnIeS

 10 niCKELs

Then your method would produce the following output:

Total money: $3.84

You may assume that the file contains at least 1 pair of tokens. You may also assume that the input is valid; that the
input has an even number of tokens, that every other token is an integer, and that the others are valid coin types.

6 of 11

5. File Processing
Write a static method named matchIndex that accepts as its parameter a Scanner for an input file. Your method
should compare each neighboring pair of lines (the first and second lines, then the third and fourth lines, and so on)
looking for places where the character at a given 0-based index from the two lines is the same. For example, in the
strings "hello" and "belt", the characters at indexes 1 ('e') and 2 ('l') match. Your code should be case-sensitive; for
example, "J" does not match "j".

For each pair of lines, your method should print output showing the character indexes that match, separated by spaces
in the format shown below. If no characters match, print "none" instead as shown below.

For example, suppose the input file contains the following text. (Line numbers and character indexes are shown
around the input and matching characters are shown in bold, but these markings do not appear in the actual file.)

 0123456789012345678901234567890123456789
1
2
3
4
5
6
7
8
9
10

The quick brown fox
Those achy down socks
Wheels on the school bus go round
The wipers go swish swish swish
His name is Robert Paulson
So long 'n thanks for all the fish
Humpty Dumpty sat on a wall
And then he also had a great fall
booyakasha
Bruno Ali G Borat

When passed the above file, your method would produce the following output:
lines 1 and 2: 0 1 7 12 13 14 15 17
lines 3 and 4: 1 2 13 14 23
lines 5 and 6: none
lines 7 and 8: 4 14 20 21 22
lines 9 and 10: none

Notice that lines are not generally the same length. You may assume that the file contains an even number of lines.

7 of 11

6. Array Programming
Write a static method named longer that accepts two arrays of strings a1 and a2 as parameters and returns a new
array a3 such that each element of a3 at each index i stores whichever string has greater length (more characters)
between the elements at that same index i in arrays a1 and a2. If there is a tie, take the element from a1.

For example, if a1 and a2 store the following elements:
String[] a1 = {"star", "pie", "jelly bean", "car"};
String[] a2 = {"cookie", "fig", "banana", "soda"};

Then your method should return the new array {"cookie", "pie", "jelly bean", "soda"}.

If the arrays a1 and a2 are not the same length, the result returned by your method should have as many elements as
the larger of the two arrays. If a given index i is in bounds of a1 but not a2 (or vice versa), there are not two elements
to compare, so your result array's element at index i should store the value "oops". For example, if a1 and a2 store
the following elements:
String[] a1 = {"Splinter", "Leo", "April", "Don", "Raph"};
String[] a2 = {"Krang", "Shredder", "Bebop"};

Then your method should return the new array {"Splinter", "Shredder", "April", "oops", "oops"}.

For full credit, do not modify the elements of a1 or a2. Do not make any assumptions about the length of a1 or a2 or
the length of the strings. You may assume that neither array is null and no element of either array is null.

8 of 11

7. Array Programming
Write a static method named evenBeforeOdd that accepts an array of integers as a parameter and rearranges its
elements so that all even values appear before all odds. For example, if the following array is passed to your method:
int[] numbers = {5, 2, 4, 9, 3, 6, 2, 1, 11, 1, 10, 4, 7, 3};

Then after the method has been called, one acceptable ordering of the elements would be:
 {4, 2, 4, 10, 2, 6, 3, 1, 11, 1, 9, 5, 7, 3}

The exact order of the elements does not matter, so long as all even values appear before all odd values. For example,
the following would also be an acceptable ordering:
 {2, 2, 4, 4, 6, 10, 1, 1, 3, 3, 5, 7, 9, 11}

Do not make any assumptions about the length of the array or the range of values it might contain. For example, the
array might contain no even elements or no odd elements. You may assume that the array is not null.

You may not use any temporary arrays to help you solve this problem. (But you may declare as many simple
variables as you like, such as ints.) You also may not use any other data structures or complex types such as
Strings, or other data structures that were not taught in CSE 142 such as the ArrayList class from Chapter 10.
You will lose points if you use Arrays.sort in your solution.

Hint: Look for elements that are at inappropriate places in the array and move them to better locations.

9 of 11

8. Critters
Write a critter class Tigger along with its movement and eating behavior. All unspecified aspects of Tigger use the
default behavior. Write the complete class with any fields, constructors, etc. necessary to implement the behavior.

Bouncing is what Tiggers do best! The Tigger's movement is to bounce up and down to
increasingly large heights. A Tigger object is passed an integer when it is constructed that
represents his initial bounce height. (You may assume that the bounce height is at least 1.)
Whatever bounce height is passed, he will move that many steps NORTH, then that many steps
SOUTH, then repeat for a bounce height 1 larger. For example, a new Tigger(4) will move
NORTH 4 times, then SOUTH 4 times, then NORTH 5 times, then SOUTH 5 times, then
NORTH 6 times, then SOUTH 6 times, and so on.

When a Tigger finds food, he eats it and completely starts over his bouncing behavior. That is,
he starts over on a bounce whose height is equal to the initial bounce height with which the
Tigger was constructed. For example, the following would be a sequence of moves for a new
Tigger(2) . Notice how he starts over every time he eats:

• N,N, S,S, N,N,N, S,S,S, N,N,N,N, S,S,S,S, N (eats food), N,N, S,S, N,N,N, S,S,S, N,N,N,N, ...

10 of 11

9. Classes and Objects
Suppose that you are provided with a pre-written class ClockTime as
described at right. (This was shown on one of our practice exams,
except with the advance method from that exam added.) Assume
that the fields, constructor, and methods shown are implemented.
You may refer to them or use them in solving this problem.

Write an instance method named isWorkTime that will be placed
inside the ClockTime class to become a part of each ClockTime
object's behavior. The isWorkTime method returns true if the
ClockTime object represents a time during the normal "work day"
from 9:00 AM to 5:00 PM, inclusive. Any times outside that range
would cause the method to return a result of false.

For example, if the following object is declared in client code:
ClockTime t1 = new ClockTime(3, 27, "PM");

The following call to your method would return true:
if (t1.isWorkTime()) { // true

Here are some other objects. Their results when used with your
method are shown at right in comments:
ClockTime t2 = new ClockTime(12, 45, "AM"); //false
ClockTime t3 = new ClockTime(6, 02, "AM"); //false
ClockTime t4 = new ClockTime(8, 59, "AM"); //false
ClockTime t5 = new ClockTime(9, 00, "AM"); //true
ClockTime t6 = new ClockTime(11, 38, "AM"); //true
ClockTime t7 = new ClockTime(12, 53, "PM"); //true
ClockTime t8 = new ClockTime(3, 15, "PM"); //true
ClockTime t9 = new ClockTime(4, 59, "PM"); //true
ClockTime ta = new ClockTime(5, 00, "PM"); //true
ClockTime tb = new ClockTime(5, 01, "PM"); //false
ClockTime tc = new ClockTime(8, 30, "PM"); //false
ClockTime td = new ClockTime(11, 59, "PM"); //false

Your method should not modify the state of the ClockTime object.
Assume that the state of the ClockTime object is valid at the start of
the call and that the amPm field stores either "AM" or "PM".

// A ClockTime object represents
// an hour:minute time during
// the day or night, such as
// 10:45 AM or 6:27 PM.

public class ClockTime {
 private int hour;
 private int minute;
 private String amPm;

 // Constructs a new time for
 // the given hour/minute
 public ClockTime(int h,
 int m, String ap)

 // returns the field values
 public int getHour()
 public int getMinute()
 public String getAmPm()

 // returns String for time;
 // example: "6:27 PM"
 public String toString()

 // advances this ClockTime
 // by the given # of minutes
 public void advance(int m)

 // your method would go here

}

11 of 11

X. Extra Credit (+1 point)
Draw a picture of what your TA would look like if he/she chose to fully embrace hip-hop culture.
Make sure to write your TA's name (and/or hip-hop nickname) on your picture so we know who it is!

(Any picture that appears to reflect a nontrivial effort will receive the bonus point.)

