
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 4
Lecture 4-2: Advanced if/else; Cumulative sum

reading: 4.1, 4.3, 4.5;

"Procedural Design Heuristics"
(online supplement)

Copyright 2008 by Pearson Education

Advanced if/else

reading: 4.5

self-check: Ch. 4 #24-27
exercises: Ch. 4 #10-14

Copyright 2008 by Pearson Education
3

Logical operators
Tests can be combined using logical operators:

"Truth tables" for each, used with logical values p and q:

!(2 == 3)

(2 == 3) || (-1 < 5)

(2 == 3) && (-1 < 5)

Example

not

or

and

Description

true!

true||

false&&

ResultOperator

truefalsetruefalse

false

false

true

p && q

false

false

true

q

falsefalse

truetrue

truetrue

p || qp

truefalse

falsetrue

!pp

Copyright 2008 by Pearson Education
4

Evaluating logic expressions
Relational operators have lower precedence than math.

5 * 7 >= 3 + 5 * (7 - 1)
5 * 7 >= 3 + 5 * 6
35 >= 3 + 30
35 >= 33
true

Relational operators cannot be "chained" as in algebra.
2 <= x <= 10
true <= 10 (assume that x is 15)
error!

Instead, combine multiple tests with && or ||

2 <= x && x <= 10
true && false
false

Copyright 2008 by Pearson Education
5

Logical questions
What is the result of each of the following expressions?

int x = 42;
int y = 17;
int z = 25;

y < x && y <= z

x % 2 == y % 2 || x % 2 == z % 2

x <= y + z && x >= y + z

!(x < y && x < z)

(x + y) % 2 == 0 || !((z - y) % 2 == 0)

Answers: true, false, true, true, false

Exercise: Write a program that prompts for information
about a person and uses it to decide whether to date them.

Copyright 2008 by Pearson Education
6

Factoring if/else code
factoring: Extracting common/redundant code.

Can reduce or eliminate redundancy from if/else code.

Example:
if (a == 1) {

System.out.println(a);
x = 3;
b = b + x;

} else if (a == 2) {
System.out.println(a);
x = 6;
y = y + 10;
b = b + x;

} else { // a == 3
System.out.println(a);
x = 9;
b = b + x;

}

System.out.println(a);
x = 3 * a;
if (a == 2) {

y = y + 10;
}
b = b + x;

Copyright 2008 by Pearson Education
7

if/else with return
// Returns the larger of the two given integers.
public static int max(int a, int b) {

if (a > b) {
return a;

} else {
return b;

}
}

Methods can return different values using if/else
Whichever path the code enters, it will return that value.
Returning a value causes a method to immediately exit.
All paths through the code must reach a return statement.

Copyright 2008 by Pearson Education
8

All paths must return
public static int max(int a, int b) {

if (a > b) {
return a;

}
// Error: not all paths return a value

}

The following also does not compile:
public static int max(int a, int b) {

if (a > b) {
return a;

} else if (b >= a) {
return b;

}
}

The compiler thinks if/else/if code might skip all paths,
even though mathematically it must choose one or the other.

Copyright 2008 by Pearson Education
9

if/else, return question
Write a method quadrant that accepts a pair of real
numbers x and y and returns the quadrant for that point:

Example: quadrant(-4.2, 17.3) returns 2
If the point falls directly on either axis, return 0.

x+x-

y+

y-

quadrant 1quadrant 2

quadrant 3 quadrant 4

Copyright 2008 by Pearson Education
10

if/else, return answer
public static int quadrant(double x, double y) {

if (x > 0 && y > 0) {
return 1;

} else if (x < 0 && y > 0) {
return 2;

} else if (x < 0 && y < 0) {
return 3;

} else if (x > 0 && y < 0) {
return 4;

} else { // at least one coordinate equals 0
return 0;

}
}

Copyright 2008 by Pearson Education

Cumulative sum

reading: 4.1

self-check: Ch. 4 #1-3
exercises: Ch. 4 #1-6

Copyright 2008 by Pearson Education
12

Adding many numbers
How would you find the sum of all integers from 1-1000?

// This may require a lot of typing
int sum = 1 + 2 + 3 + 4 + ... ;
System.out.println("The sum is " + sum);

What if we want the sum from 1 - 1,000,000?
Or the sum up to any maximum?

How can we generalize the above code?

Copyright 2008 by Pearson Education
13

Cumulative sum loop
int sum = 0;
for (int i = 1; i <= 1000; i++) {

sum = sum + i;
}
System.out.println("The sum is " + sum);

cumulative sum: A variable that keeps a sum in progress
and is updated repeatedly until summing is finished.

The sum in the above code is an attempt at a cumulative sum.

Cumulative sum variables must be declared outside the loops
that update them, so that they will still exist after the loop.

Copyright 2008 by Pearson Education
14

Cumulative product
This cumulative idea can be used with other operators:

int product = 1;
for (int i = 1; i <= 20; i++) {

product = product * 2;
}
System.out.println("2 ^ 20 = " + product);

How would we make the base and exponent adjustable?

Copyright 2008 by Pearson Education
15

Scanner and cumulative sum
We can do a cumulative sum of user input:

Scanner console = new Scanner(System.in);
int sum = 0;
for (int i = 1; i <= 100; i++) {

System.out.print("Type a number: ");
sum = sum + console.nextInt();

}
System.out.println("The sum is " + sum);

Copyright 2008 by Pearson Education
16

Cumulative sum question
Modify the Receipt program from Ch. 2.

Prompt for how many people, and each person's dinner cost.
Use static methods to structure the solution.

Example log of execution:
How many people ate? 4
Person #1: How much did your dinner cost? 20.00
Person #2: How much did your dinner cost? 15
Person #3: How much did your dinner cost? 30.0
Person #4: How much did your dinner cost? 10.00

Subtotal: $75.0
Tax: $6.0
Tip: $11.25
Total: $92.25

Copyright 2008 by Pearson Education
17

Cumulative sum answer
// This program enhances our Receipt program using a cumulative sum.
import java.util.*;

public class Receipt2 {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);
double subtotal = meals(console);
results(subtotal);

}

// Prompts for number of people and returns total meal subtotal.
public static double meals(Scanner console) {

System.out.print("How many people ate? ");
int people = console.nextInt();
double subtotal = 0.0; // cumulative sum

for (int i = 1; i <= people; i++) {
System.out.print("Person #" + i +

": How much did your dinner cost? ");
double personCost = console.nextDouble();
subtotal = subtotal + personCost; // add to sum

}
return subtotal;

}
...

Copyright 2008 by Pearson Education
18

Cumulative answer, cont'd.
...

// Calculates total owed, assuming 8% tax and 15% tip
public static void results(double subtotal) {

double tax = subtotal * .08;
double tip = subtotal * .15;
double total = subtotal + tax + tip;

System.out.println("Subtotal: $" + subtotal);
System.out.println("Tax: $" + tax);
System.out.println("Tip: $" + tip);
System.out.println("Total: $" + total);

}
}

Copyright 2008 by Pearson Education
19

if/else, return question
Write a method countFactors that returns
the number of factors of an integer.

countFactors(24) returns 8 because
1, 2, 3, 4, 6, 8, 12, and 24 are factors of 24.

Solution:
// Returns how many factors the given number has.
public static int countFactors(int number) {

int count = 0;
for (int i = 1; i <= number; i++) {

if (number % i == 0) {
count++; // i is a factor of number

}
}
return count;

}

