Building Java Programs

Chapter 5

Lecture 5-2: Random Numbers; Type boolean reading: 5.1-5.2, 5.6

Type boolean

 reading: 5.2self-check: \#11-16
exercises: \#12
videos: 5.2

Methods that are tests

- Some methods return logical values.
- A call to such a method is used as a test in a loop or if.

```
Scanner console = new Scanner(System.in);
System.out.print("Type your first name: ");
String name = console.next();
if (name.startsWith("Dr.")) {
    System.out.println("Will you marry me?");
} else if (name.endsWith("Esq.")) {
    System.out.println("And I am Ted 'Theodore' Logan!");
}
```


String test methods

Method	Description
equals (str)	whether two strings contain the same characters
equalsIgnoreCase (str)	whether two strings contain the same characters, ignoring upper vs. lower case
startsWith(str)	whether one contains other's characters at start
endsWith (str)	whether one contains other's characters at end
contains (str)	whether the given string is found within this one

```
String name = console.next();
if (name.contains("Prof")) {
    System.out.println("When are your office hours?");
} else if (name.equalsIgnoreCase("STUART")) {
    System.out.println("Let's talk about meta!");
}
```


Type boolean

- boolean: A logical type whose values are true and false.
- A logical test is actually a boolean expression.
- It is legal to:
- create a boolean variable
- pass a boolean value as a parameter
- return a boolean value from methods
- call a method that returns a boolean and use it as a test

```
boolean minor = (age < 21);
boolean isProf = name.contains("Prof");
boolean lovesCSE = true;
```

// allow only CSE-loving students over 21
if (minor || isProf || !lovesCSE) \{
System.out.println("Can't enter the club!");
\}

Using boolean

- Why is type boolean useful?
- Can capture a complex logical test result and use it later
- Can write a method that does a complex test and returns it
- Makes code more readable
- Can pass around the result of a logical test (as param/return)

```
boolean goodAge = age >= 12 && age < 29;
boolean goodHeight = height >= 78 && height < 84;
boolean rich = salary >= 100000.0;
if ((goodAge && goodHeight) || rich) {
    System.out.println("Okay, let's go out!");
} else {
    System.out.println("It's not you, it's me...");
```

\}

Comparing strings

- Relational operators such as < and == fail on objects.

```
Scanner console = new Scanner(System.in);
System.out.print("What is your name? ");
String name = console.next();
if (name == "Barney") {
    System.out.println("I love you, you love me,");
    System.out.println("We're a happy family!");
}
```

- This code will compile, but it will not print the song.
- == compares objects by references (seen later), so it will return false even when two Strings have the same letters.

The equals method

- Objects are compared using a method named equals.

```
Scanner console = new Scanner(System.in);
System.out.print("What is your name? ");
String name = console.next();
if (name.equals("Barney")) {
    System.out.println("I love you, you love me,");
    System.out.println("We're a happy family!");
}
```

- You can chain calls together to get a different result: if (name.toUpperCase().contains("BARNEY")) \{ ...

Strings question

- Prompt the user for two words and report whether they:
- "rhyme" (end with the same last two letters)
- alliterate (begin with the same letter)
- Example output: (run \#1)

Type two words: car STAR
They rhyme!
(run \#2)
Type two words: bare bear They alliterate!
(run \#3)
Type two words: sell shell
They alliterate!
They rhyme!
(run \#4)
Type two words: extra strawberry

Strings answer

// Determines whether two words rhyme and/or alliterate. import java.util.*;
public class Rhyme \{
public static void main(String[] args) \{
Scanner console = new Scanner(System.in); System.out.print("Type two words: ");
String wordl = console.next().toLowerCase();
String word2 = console.next().toLowerCase();
// check whether they end with the same two letters if (word2.length() >= 2 \&\& word1.endsWith(word2.substring(word2.length() - 2))) \{ System.out.println("They rhyme!");
\}
// check whether they alliterate
if (word1.startsWith(word2.substring(0, 1)) \{ System.out.println("They alliterate!");
\}

Random numbers

reading: 5.1

self-checks: \#8-10, 24
exercises: \#3-6, 10
videos: 5.1

The Random class

- A Random object generates pseudo-random numbers.
- Class Random is found in the java.util package. import java.util.*;

Method name	Description
nextInt ()	returns a random integer
nextInt (max)	returns a random integer in the range [0, max) in other words, 0 to max-1 inclusive
nextDouble()	returns a random real number in the range [0.0, 1.0)

- Example:

Random rand $=$ new Random();
int randomNumber $=$ rand.nextInt(10); // 0-9

Generating random numbers

- Common usage: to get a random number from 1 to N

$$
\text { int } n=\text { rand.nextInt(20) }+1 ; \quad / / 1-20 \text { inclusive }
$$

- To get a number in arbitrary range [min, max] inclusive: name. nextInt (size of range) + min
- where (size of range) is (max - min + 1)
- Example: A random integer between 4 and 10 inclusive:

$$
\text { int } n=\text { rand.nextInt }(7)+4 ;
$$

Random questions

- Given the following declaration, how would you get: Random rand = new Random();
- A random number between 1 and 47 inclusive? int random1 = rand.nextInt (47) +1 ;
- A random number between 23 and 30 inclusive? int random 2 = rand.nextInt (8) +23 ;
- A random even number between 4 and 12 inclusive? int random3 $=$ rand.nextInt (5) * $2+4$;

Random and other types

- nextDouble method returns a double between 0.0-1.0
- Example: Get a random GPA value between 1.5 and 4.0: double randomGpa = rand.nextDouble() * 2.5 + 1.5;
- Any set of possible values can be mapped to integers
- code to randomly play Rock-Paper-Scissors:

```
int r = rand.nextInt(3);
```

if (r == 0) \{
System.out.println("Rock");
\} else if (r == 1) \{
System.out.println("Paper");
\} else \{ // r == 2
System.out.println("Scissors");
\}

Random question

- Write a program that simulates rolling of two 6-sided dice until their combined result comes up as 7 .

```
2+4=6
3+5=8
5+6=11
1+1=2
4+3=7
You won after 5 tries!
```


Random answer

```
// Rolls two dice until a sum of 7 is reached.
import java.util.*;
public class Dice {
    public static void main(String[] args) {
            Random rand = new Random();
            int tries = 0;
            int sum = 0;
            while (sum != 7) {
            // roll the dice once
            int roll1 = rand.nextInt(6) + 1;
            int roll2 = rand.nextInt(6) + 1;
            sum = roll1 + roll2;
                        System.out.println(roll1 + " + " + roll2 + " = " + sum);
                        tries++;
                            }
                        System.out.println("You won after " + tries + " tries!");

\section*{Random question}
- Write a program that plays an adding game.
- Ask user to solve random adding problems with 2-5 numbers.
- The user gets 1 point for a correct answer, 0 for incorrect.
- The program stops after 3 incorrect answers.
\(4+10+3+10=\underline{27}\)
\(9+2=\underline{11}\)
\(8+6+9=\underline{25}\)
Wrong! The answer was 30
\(5+9=\frac{13}{}\)
Wrong! The answer was 14
\(4+9+9=\underline{22}\)
\(3+1+7+\frac{13}{2}=\)
\(4+2+10+9+\frac{42}{7}=\underline{42}\)
Wrong! The answer was 32
You earned 4 total points.

\section*{Random answer}
```

// Asks the user to do adding problems and scores them.
import java.util.*;
public class AddingGame {
public static void main(String[] args) {
Scanner console = new Scanner(System.in);
Random rand = new Random();
// play until user gets 3 wrong
int points = 0;
int wrong = 0;
while (wrong < 3) {
int result = play(console, rand); // play one game
if (result > 0) {
points++;
} else {
wrong++;
}
}
System.out.println("You earned " + points + " total points.");
}

```

\section*{Random answer 2}
```

// Builds one addition problem and presents it to the user.
// Returns 1 point if you get it right, 0 if wrong.
public static int play(Scanner console, Random rand) {
// print the operands being added, and sum them
int operands = rand.nextInt(4) + 2;
int sum = rand.nextInt(10) + 1;
System.out.print(sum);
for (int i = 2; i <= operands; i++) {
int n = rand.nextInt(10) + 1;
sum += n;
System.out.print(" + " + n);
}
System.out.print(" = ");
// read user's guess and report whether it was correct
int guess = console.nextInt();
if (guess == sum) {
return 1;
} else {
System.out.println("Wrong! The answer was " + total);
return 0;
}
}

```
```

