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Building Java Programs

Chapter 8
Lecture 8-3: Constructors; Encapsulation

reading: 8.3 - 8.6
self-checks: #13-18, 20-21

exercises: #5, 9, 14
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The toString method

reading: 8.6

self-check: #18, 20-21
exercises: #9, 14
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Printing objects
By default, Java doesn't know how to print objects:
Point p = new Point();
p.x = 10;
p.y = 7;
System.out.println("p is " + p);  // p is Point@9e8c34

// better, but cumbersome;           p is (10, 7)

System.out.println("p is (" + p.x + ", " + p.y + ")");

// desired behavior
System.out.println("p is " + p);  // p is (10, 7)
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The toString method
tells Java how to convert an object into a String

Point p1 = new Point(7, 2);
System.out.println("p1: " + p1);

// the above code is really calling the following:
System.out.println("p1: " + p1.toString());

Every class has a toString, even if it isn't in your code.
Default: class's name @ object's memory address  (base 16)

Point@9e8c34
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toString syntax
public String toString() {

code that returns a String representing this object;
}

Method name, return, and parameters must match exactly.

Example:
// Returns a String representing this Point.
public String toString() {

return "(" + x + ", " + y + ")";
}
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Object initialization: 
constructors

reading: 8.4

self-check: #10-12
exercises: #9, 11, 14, 16
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Initializing objects
Currently it takes 3 lines to create a Point and initialize it:
Point p = new Point();
p.x = 3;
p.y = 8;                     // tedious

We'd rather specify the fields' initial values at the start:
Point p = new Point(3, 8);   // better!

We are able to this with most types of objects in Java.
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Constructors
constructor: Initializes the state of new objects.

public type(parameters) {
statements;

}

runs when the client uses the new keyword

no return type is specified;
it implicitly "returns" the new object being created

If a class has no constructor, Java gives it a default 
constructor with no parameters that sets all fields to 0.
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Constructor example
public class Point {

int x;
int y;

// Constructs a Point at the given x/y location.
public Point(int initialX, int initialY) {

x = initialX;
y = initialY;

}

public void translate(int dx, int dy) {
x = x + dx;
y = y + dy;

}

...
}
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Tracing a constructor call
What happens when the following call is made?

Point p1 = new Point(7, 2);

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

public void translate(int dx, int dy) {
x += dx;
y += dy;

}

yxp1
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Client code, version 3
public class PointMain3 {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point(5, 2);
Point p2 = new Point(4, 3);

// print each point
System.out.println("p1: (" + p1.x + ", " + p1.y + ")");
System.out.println("p2: (" + p2.x + ", " + p2.y + ")"); 

// move p2 and then print it again
p2.translate(2, 4);
System.out.println("p2: (" + p2.x + ", " + p2.y + ")"); 

}
}

OUTPUT:
p1: (5, 2)
p2: (4, 3)
p2: (6, 7)
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Multiple constructors
A class can have multiple constructors.

Each one must accept a unique set of parameters.

Exercise: Write a Point constructor with no parameters 
that initializes the point to (0, 0).

// Constructs a new point at (0, 0).
public Point() {

x = 0;
y = 0;

}
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Common constructor bugs
1.  Re-declaring fields as local variables  ("shadowing"):

public Point(int initialX, int initialY) {
int x = initialX;
int y = initialY;

}

This declares local variables with the same name as the fields, 
rather than storing values into the fields.  The fields remain 0.

2.  Accidentally giving the constructor a return type:
public void Point(int initialX, int initialY) {

x = initialX;
y = initialY;

}

This is actually not a constructor, but a method named Point
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Encapsulation

reading: 8.5 - 8.6
self-check: #13-17

exercises: #5
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Encapsulation
encapsulation: Hiding implementation details from clients.

Encapsulation forces abstraction.
separates external view (behavior) from internal view (state)

protects the integrity of an object's data
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Private fields
A field that cannot be accessed from outside the class

private type name;

Examples:

private int id;

private String name;

Client code won't compile if it accesses private fields:
PointMain.java:11: x has private access in Point

System.out.println(p1.x);

^
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Accessing private state
// A "read-only" access to the x field ("accessor")
public int getX() {

return x;
}

// Allows clients to change the x field ("mutator")
public void setX(int newX) {

x = newX;
}

Client code will look more like this:

System.out.println(p1.getX());

p1.setX(14);
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Point class, version 4
// A Point object represents an (x, y) location.
public class Point {

private int x;
private int y;

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

public int getX() {
return x;

}

public int getY() {
return y;

}

public double distanceFromOrigin() {
return Math.sqrt(x * x + y * y);

}

public void setLocation(int newX, int newY) {
x = newX;
y = newY;
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Benefits of encapsulation
Abstraction between object and clients

Protects object from unwanted access
Example: Can't fraudulently increase an Account's balance.

Can change the class implementation later
Example: Point could be rewritten in polar
coordinates (r, θ) with the same methods.

Can constrain objects' state (invariants)
Example: Only allow Accounts with non-negative balance.

Example: Only allow Dates with a month from 1-12.
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The keyword this

reading: 8.7
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The this keyword
this : Refers to the implicit parameter inside your class.

(a variable that stores the object on which a method is called)

Refer to a field: this.field

Call a method: this.method(parameters);

One constructor this(parameters);
can call another:
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Variable shadowing
shadowing: 2 variables with same name in same scope.

Normally illegal, except when one variable is a field.

public class Point {
private int x;
private int y;

...

// this is legal
public void setLocation(int x, int y) {

...
}

In most of the class, x and y refer to the fields.
In setLocation, x and y refer to the method's parameters.
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Fixing shadowing
public class Point {

private int x;
private int y;

...

public void setLocation(int x, int y) {
this.x = x;
this.y = y;

}
}

Inside setLocation,
To refer to the data field x, say this.x
To refer to the parameter x, say x
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Calling another constructor
public class Point {

private int x;
private int y;

public Point() {
this(0, 0);     // calls (x, y) constructor

}

public Point(int x, int y) {
this.x = x;
this.y = y;

}

...
}

Avoids redundancy between constructors
Only a constructor (not a method) can call another constructor


