Building Java Programs

Chapter 8
Lecture 8-3: Constructors; Encapsulation

reading: 8.3 - 8.6
self-checks: #13-18, 20-21
exercises: #5, 9, 14

—

Copyright 2010 by Pearson Education

The toString method

reading: 8.6

self-check: #18, 20-21
exercises: #9, 14

]

Copyright 2010 by Pearson Education

=

=]

— — e ——
e e = —

Printing bToje

e By default, Java doesn't know how to

o ——

I
\ AR

cts

print objects:

Point p = new Point();

e s

il

System.out.println("p is " + p); // p is Point@9e8c34
// better, but cumbersome; pois-GEQ T
Sy:gEemioubiprrnt it pais i p e e e e e I B
// desired behavior

S VAh T o bR o Ml S o S o ma el MRS Mo W B B e e

: _ Copyright 2010 by Pearson Education

SR SesE \

e _ p

The toString method

tells Java how to convert an object into a String

PornErplas new s Pognt Gl 20
SRVASHEl i N b oben ket B W ALS R o BT

// the above code is really calling the following:
System.out.println("pl: " + pl.toString());

e Every class has a toString, even if it isn't in your code.
» Default: class's name @ object's memory address (base 16)

Point@9e8c34

- Copyright 2010 by Pearson Education

ey e

toString syntax

plbiEte G nndr e o S e e
code that returns a String representing this object;

e

» Method name, return, and parameters must match exactly.

 Example:

// Returns a String representing this Point.
publie String teoString)
return n(n s, T o u’ | s y o u)n;

- Copyright 2010 by Pearson Education

Object initialization:
constructors

reading: 8.4

self-check: #10-12
exercises: #9, 11, 14, 16

=
=3 6
; Copyright 2010 by Pearson Education

Initializing

objects
e Currently it takes 3 lines to create a Point and initialize it:

Point p = new Point () ;

s // tedious

» We'd rather specify the fields' initial values at the start:

Point p = new Point (3, 8); // better!

» We are able to this with most types of objects in Java.

- Copyright 2010 by Pearson Education

—— —m— ===

Constructors

e constructor: Initializes the state of new objects.

public type (parameters) |
statements;
}

e runs when the client uses the new keyword

* no return type is specified;
it implicitly "returns" the new object being created

» If a class has no constructor, Java gives it a default
constructor with no parameters that sets all fields to 0.

g ————A— 8
B FE— Copyright 2010 by Pearson Education

=

=r,

)

ey e ———— —

Constructor example

public class Point {

int x;
Sl s

// Constructs a Point at the given x/y location.
public Point (int initialX, int initialY) {

Xx = initialX;

y = initialyY;

pubilic void transdateltint e intdy e o
D bt e D e by i

=

: _ Copyright 2010 by Pearson Education

Tracing a constructor call

* What happens when the following call is made?

Polntaplistnew: Pornt s 2=

pr(¥y » | = Y

publtic:Point fintinitialX int initialby) ¢
x = initialX;
y = initialY;

)

public void translate(int dx, int dy) {
Y, s e b
y += dy;

)

10

=

Copyright 2010 by Pearson Education

= —_— = —

Client code, version 3

public class PointMain3
public static void main(String[] args) {
// create two Point objects
Point pl = new Point (5, 2);
Point p2 = new Point (4, 3);

// print each point

SRy oA s o o el S eV S i S el e ol Bt e A Sl R S A S S
System.out.println("p2: (" + p2.x + ", " + p2.y +
// move p2 and then print it again
p2.translate (2, 4);

SyisEemzouEprinElm Eiposamivnpap onaanErm it e e e
)
)
OUTPUT:
PSR B o)
SN At
p2: (6, 7)

-

Copyright 2010 by Pearson Education

Il)ll),.

1k

R
i
I -

Multiple constructors

* A class can have multiple constructors.
» Each one must accept a unique set of parameters.

* Exercise: Write a point constructor with no parameters
that initializes the point to (0, 0).

// Constructs a new point at (0, 0).
public Point () {

b R SR

ey

e il
- Copyright 2010 by Pearson Education

P —— — —

Common constructor bugs

1. Re-declaring fields as local variables ("shadowing"):
public Point (int initialX, int initialyY) {
7 ot SR N R S SR SN
i e ot b M G A

}

» This declares local variables with the same name as the fields,
rather than storing values into the fields. The fields remain O.

2. Accidentally giving the constructor a return type:

public void Doint{int Snitial ik e
S e ma Rk s Mk G
Vi el st B A

)

. » This is actually not a constructor, but a method named Point
=3 13

~ Copyright 2010 by Pearson Education

Encapsulation

reading: 8.5 - 8.6
self-check: #13-17
exercises: #5

=

R 14
ail Copyright 2010 by Pearson Education

» Encapsulation forces abstraction.
« separates external view (behavior) from internal view (state)
« protects the integrity of an object's data

* encapsulation: Hiding implementation details from clients.

Q0

y RE3
F31

qn 3: 3 2N3394

40310 NP
/ UMD OUTPUT
Add Measure—"ra

Registor Voltage .sé
Here Here !

.

Copyright 2010 by Pearson Education

15

oAV
e
B il ===

e — —

Private Fields

A field that cannot be accessed from outside the class

private type name;

« Examples:

private int id;
private String name;

* Client code won't compile if it accesses private fields:

PointMain.java:11l: x has private access in Point
System.out.println(pl.x);

A

16

~ Copyright 2010 by Pearson Education

e
——
R
\ e .

e _ p

Accessing private state

// A "read-only" access to the x field ("accessor")
Ellbliic e sant el

1 SH D fg e
}

// Allows clients to change the x field ("mutator")
public void setX(int newX)

X = newxX;
}

o Client code will look more like this:

System.out.println(pl.getX()) ;
pl.setX(14) ;

17

~ Copyright 2010 by Pearson Education

Point class, version 4

// A Point object represents an (x, y) location.
public class Point {

private int x;
private int y;

public Point (int initialX, int initialyY) {
e s e G
Ve nacE STl

)

public int getX() {
} return x;

public int get¥() {
} return y;

public double distanceFromOrigin()
} return Math.sqgrt(x * X + v * v);

public void setLocation(int newX, int newY)

X = newX;
 Copyright 2010 by Pgarson Educations .

{

18

R
\ oA
B _

A

—— — —

Benefits of encapsulation

* Abstraction between object and clients

* Protects object from unwanted access
« Example: Can't fraudulently increase an Account's balance.

e Can change the class implementation later

« Example: point could be rewritten in polar r
coordinates (r,) with the same methods. i

e Can constrain objects' state (invariants)
« Example: Only allow Accounts with non-negative balance.
 Example: Only allow Dates with a month from 1-12.

~ Copyright 2010 by Pearson Education

IRS)

The keyword this

reading: 8.7

- 20

f ~__ Copyright 2010 by Pearson Education

The this keyword

* this : Refers to the implicit parameter inside your class.
(a variable that stores the object on which a method is called)

ST

» Refer to a field: this.field
o Call a method: this.method (parameters) ;
» One constructor this (parameters) ;

can call another:

———— Copyright 2010 by Pearson Education

21

ST
\ ot
e

Variable shadowing

» shadowing: 2 variables with same name in same scope.
 Normally illegal, except when one variable is a field.

i

public class Point {
private int x;
private int y;

// this is legal
public void setLocation(int x, int y) {

)

» In most of the class, x and vy refer to the fields.
* In setLocation, x and y refer to the method's parameters.

—

Fe 3 22
~ " Copyright 2010 by Pearson Education

—
o
-
\ —— :
R -

WFhixing shaEIwng

public class Point {
private int x;
private int y;

e

publicivoid getlhocation Grntix, Sint oyl o
this.x = x;
this.y = y;

e Inside setLocation,
» To refer to the data field x, say this.x
» To refer to the parameter x, say x

23

.

Copyright 2010 by Pearson Education

Calllng another constructor

public class Point {
R G S B E s
private int vy;

public Point () {
this (0, 0); // calls (x, y) constructor

) \.\‘

pEbdnt e Ponsinn s e e e
this.x = x;
this.y = y;

}

« Avoids redundancy between constructors
« Only a constructor (not a method) can call another constructor
24

.

Copyright 2010 by Pearson Education

