
Copyright 2010 by Pearson Education

Building Java Programs

Chapter 8
Lecture 8-3: Constructors; Encapsulation

reading: 8.3 - 8.6
self-checks: #13-18, 20-21

exercises: #5, 9, 14

2
Copyright 2010 by Pearson Education

The toString method

reading: 8.6

self-check: #18, 20-21
exercises: #9, 14

Copyright 2010 by Pearson Education
3

Printing objects
By default, Java doesn't know how to print objects:
Point p = new Point();
p.x = 10;
p.y = 7;
System.out.println("p is " + p); // p is Point@9e8c34

// better, but cumbersome; p is (10, 7)

System.out.println("p is (" + p.x + ", " + p.y + ")");

// desired behavior
System.out.println("p is " + p); // p is (10, 7)

Copyright 2010 by Pearson Education
4

The toString method
tells Java how to convert an object into a String

Point p1 = new Point(7, 2);
System.out.println("p1: " + p1);

// the above code is really calling the following:
System.out.println("p1: " + p1.toString());

Every class has a toString, even if it isn't in your code.
Default: class's name @ object's memory address (base 16)

Point@9e8c34

Copyright 2010 by Pearson Education
5

toString syntax
public String toString() {

code that returns a String representing this object;
}

Method name, return, and parameters must match exactly.

Example:
// Returns a String representing this Point.
public String toString() {

return "(" + x + ", " + y + ")";
}

6
Copyright 2010 by Pearson Education

Object initialization:
constructors

reading: 8.4

self-check: #10-12
exercises: #9, 11, 14, 16

Copyright 2010 by Pearson Education
7

Initializing objects
Currently it takes 3 lines to create a Point and initialize it:
Point p = new Point();
p.x = 3;
p.y = 8; // tedious

We'd rather specify the fields' initial values at the start:
Point p = new Point(3, 8); // better!

We are able to this with most types of objects in Java.

Copyright 2010 by Pearson Education
8

Constructors
constructor: Initializes the state of new objects.

public type(parameters) {
statements;

}

runs when the client uses the new keyword

no return type is specified;
it implicitly "returns" the new object being created

If a class has no constructor, Java gives it a default
constructor with no parameters that sets all fields to 0.

Copyright 2010 by Pearson Education
9

Constructor example
public class Point {

int x;
int y;

// Constructs a Point at the given x/y location.
public Point(int initialX, int initialY) {

x = initialX;
y = initialY;

}

public void translate(int dx, int dy) {
x = x + dx;
y = y + dy;

}

...
}

Copyright 2010 by Pearson Education
10

Tracing a constructor call
What happens when the following call is made?

Point p1 = new Point(7, 2);

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

public void translate(int dx, int dy) {
x += dx;
y += dy;

}

yxp1

Copyright 2010 by Pearson Education
11

Client code, version 3
public class PointMain3 {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point(5, 2);
Point p2 = new Point(4, 3);

// print each point
System.out.println("p1: (" + p1.x + ", " + p1.y + ")");
System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

// move p2 and then print it again
p2.translate(2, 4);
System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

}
}

OUTPUT:
p1: (5, 2)
p2: (4, 3)
p2: (6, 7)

Copyright 2010 by Pearson Education
12

Multiple constructors
A class can have multiple constructors.

Each one must accept a unique set of parameters.

Exercise: Write a Point constructor with no parameters
that initializes the point to (0, 0).

// Constructs a new point at (0, 0).
public Point() {

x = 0;
y = 0;

}

Copyright 2010 by Pearson Education
13

Common constructor bugs
1. Re-declaring fields as local variables ("shadowing"):

public Point(int initialX, int initialY) {
int x = initialX;
int y = initialY;

}

This declares local variables with the same name as the fields,
rather than storing values into the fields. The fields remain 0.

2. Accidentally giving the constructor a return type:
public void Point(int initialX, int initialY) {

x = initialX;
y = initialY;

}

This is actually not a constructor, but a method named Point

14
Copyright 2010 by Pearson Education

Encapsulation

reading: 8.5 - 8.6
self-check: #13-17

exercises: #5

Copyright 2010 by Pearson Education
15

Encapsulation
encapsulation: Hiding implementation details from clients.

Encapsulation forces abstraction.
separates external view (behavior) from internal view (state)

protects the integrity of an object's data

Copyright 2010 by Pearson Education
16

Private fields
A field that cannot be accessed from outside the class

private type name;

Examples:

private int id;

private String name;

Client code won't compile if it accesses private fields:
PointMain.java:11: x has private access in Point

System.out.println(p1.x);

^

Copyright 2010 by Pearson Education
17

Accessing private state
// A "read-only" access to the x field ("accessor")
public int getX() {

return x;
}

// Allows clients to change the x field ("mutator")
public void setX(int newX) {

x = newX;
}

Client code will look more like this:

System.out.println(p1.getX());

p1.setX(14);

Copyright 2010 by Pearson Education
18

Point class, version 4
// A Point object represents an (x, y) location.
public class Point {

private int x;
private int y;

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

public int getX() {
return x;

}

public int getY() {
return y;

}

public double distanceFromOrigin() {
return Math.sqrt(x * x + y * y);

}

public void setLocation(int newX, int newY) {
x = newX;
y = newY;

Copyright 2010 by Pearson Education
19

Benefits of encapsulation
Abstraction between object and clients

Protects object from unwanted access
Example: Can't fraudulently increase an Account's balance.

Can change the class implementation later
Example: Point could be rewritten in polar
coordinates (r, θ) with the same methods.

Can constrain objects' state (invariants)
Example: Only allow Accounts with non-negative balance.

Example: Only allow Dates with a month from 1-12.

20
Copyright 2010 by Pearson Education

The keyword this

reading: 8.7

Copyright 2010 by Pearson Education
21

The this keyword
this : Refers to the implicit parameter inside your class.

(a variable that stores the object on which a method is called)

Refer to a field: this.field

Call a method: this.method(parameters);

One constructor this(parameters);
can call another:

Copyright 2010 by Pearson Education
22

Variable shadowing
shadowing: 2 variables with same name in same scope.

Normally illegal, except when one variable is a field.

public class Point {
private int x;
private int y;

...

// this is legal
public void setLocation(int x, int y) {

...
}

In most of the class, x and y refer to the fields.
In setLocation, x and y refer to the method's parameters.

Copyright 2010 by Pearson Education
23

Fixing shadowing
public class Point {

private int x;
private int y;

...

public void setLocation(int x, int y) {
this.x = x;
this.y = y;

}
}

Inside setLocation,
To refer to the data field x, say this.x
To refer to the parameter x, say x

Copyright 2010 by Pearson Education
24

Calling another constructor
public class Point {

private int x;
private int y;

public Point() {
this(0, 0); // calls (x, y) constructor

}

public Point(int x, int y) {
this.x = x;
this.y = y;

}

...
}

Avoids redundancy between constructors
Only a constructor (not a method) can call another constructor

